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Does a poem enlarge the world,

or only our idea of the world?

How do you take one from the other,

I lied, or did not lie,

in answer.

— Jane Hirshfield, from “Mathematics,” in Given Sugar, Given Salt

This thesis is dedicated to all those whose work and words have

enlarged my idea of the world.
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Abstract

Magnetoencephalography (MEG) functional maps can localize brain activity for pre-

surgical mapping, but their quality is difficult to quantify. Clinical standard metrics

cannot be used when multiple sources of activity are distributed across the brain. This

thesis validates the use of reliable fraction, a novel intra-session reliability metric, for

focal maps. Scans were acquired in ‘good’ and ‘poor’ conditions, in which common

MEG quality issues were simulated. Clinical standard methods and reliable fraction,

along with two other possible metrics (the Dice and Pearson coefficients), were used

to assess data quality. High quality data proved difficult to achieve, highlighting the

need for robust quality assurance procedures. Reliable fraction was more sensitive to

data quality issues than the Dice or Pearson coefficients. Comparison of reliable

fraction with clinical standard metrics showed comparable sensitivity to changes

in data quality and suggests reliable fraction may be a useful metric for cases of

distributed brain activity.
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Chapter 1

Introduction

1.1 Pre-Surgical Mapping with Magnetoencephalography

Pre-surgical mapping of the specific functional anatomy of areas in the brain which

may be affected by the removal of a lesion is important for planning and executing

neurosurgery. In order to preserve function and more accurately predict surgical

outcomes, it is crucial to localize areas of the cortex which correspond to abilities such

as speech, movement, and touch [1]. While anatomical landmarks may be sufficient

to localize these eloquent regions of the brain in healthy individuals, functional

mapping is usually necessary for patients with brain tumours, who may experience

unpredictable functional and structural reorganization as the result of tumour growth

[2]. Pre-surgical mapping of the eloquent cortex in brain tumour patients facilitates

the planning of a surgical approach which maximizes the extent of resection while

reducing the time required for intraoperative mapping [1]. The pre-surgical functional

map can be used as a starting point for intraoperative functional mapping via direct

cortical stimulation during the resection surgery in order to ensure that function is

preserved [3, 4].

Functional mapping may be performed using a number of techniques, but for the

purposes of surgical planning non-invasive mapping with either functional magnetic

resonance imaging (fMRI) or magnetoencephalography (MEG) is common. Abnormal

blood flow near large gliomas has been shown to interfere with the interpretation of

fMRI data [5]; localization of brain activity with MEG has been shown to be more

accurate than fMRI in such cases [2, 6]. The use of MEG for pre-surgical mapping

has been shown to correlate with favourable surgical outcomes after resection for a

number of mapping paradigms [5, 7, 8].

1
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1.1.1 Neurophysiology

Magnetoencephalography records magnetic fields generated by neural activity.

Magnetic fields on the order of 50-500 fT can be detected outside the head using highly

sensitive superconducting quantum interference devices (SQUIDs). These fields are

generated by the cumulative postsynaptic activity of pyramidal cells in the cerebral

cortex. The synchronous flow of ions along tens of thousands of parallel dendrites

generates a perpendicular magnetic field which can be detected outside the head with

temporal resolution better than a millisecond [9].

1.1.2 Signal Measurement and Mapping Paradigms

In order to isolate locations in the brain specific to particular functions, functional

measurements are recorded in combination with the presentation of stimuli to evoke

the relevant neural activity. Depending on the position of the lesion or tumour,

mapping of the location and extent of somatosensory, motor, visual, auditory, and/or

language-related regions of the brain may be required. Neuromagnetic deflections

corresponding to known functional activity can be generated by a set of simple stimuli

or performance of a well-defined task. For example, subjects may be exposed to

physical or electrical stimulation to generate a response in the somatosensory cortex,

asked to perform simple motions or press a button to generate a response in the

motor cortex, passively watch changing geometric patterns or listen to auditory tones

to generate a response in the primary visual or auditory cortex, or process and classify

more complex verbal stimuli to generate a response in language-related areas [10]. The

subject’s neural response to such stimuli is collected over a number of trials within

each scan, which can be averaged for more accurate localization. After the data has

been collected, it is separated into epochs (segments corresponding to each stimulus).

Averaging the data over all epochs is standard for analysis of an evoked response,

since the signal stemming from a consistent response to the stimulus will be stable

across epochs while uncorrelated brain activity will be suppressed.
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1.1.3 Source Modelling Techniques and Interpretation

MEG sensor measurements can be used to estimate the location of the underlying

generators within the brain. In general, the magnetic field generated by a current

source in a conductive volume can be calculated using the Biot-Savart law:

B(r) =
µ0

4π

∫
J(rQ)× r− rQ

|r− rQ|3
dv (1.1)

where B(r) is the magnetic field outside the conductive volume at position r

caused by a current source J(rQ) at position rQ within the conductive volume and

µ0 is the magnetic permeability of free space.

However, this inverse problem does not have a unique solution. Constraints must

be applied to the problem in the form of a source model and a conductive model for

the head volume. There are many methods of solving the inverse problem. Clinically,

the most common approach is to specify a certain number of sources and fit each one

using an equivalent current dipole (ECD), defined as a current flow over a distance

approaching zero with a given strength, position, and orientation.

For the simplest case of a single equivalent current dipole (for which J(rQ) =

Qδ(r−rQ)) in a spherical conductive volume, the forward solution may be calculated

as follows:

Br = −µ0

4π

(Q× rQ) · er

|r− rQ|3
(1.2)

where Br is the magnetic field perpendicular to the surface of the conductor, er is

the radial unit vector, and all other variables are defined as in Equation 1.1 [11].

The most appropriate magnitude, orientation, and position (i.e. Q and rQ) for

the ECD can be iteratively estimated by sampling the space of possible solutions until

the minimum of a cost function is found. This cost function measures the difference

between the measured field and the field predicted by the source model for a given

ECD or set of ECDs (i.e. the forward solution). Alternatively, the difference between

the measured and predicted fields can be quantified by the goodness of fit, as discussed

in section 1.2.2, which is maximized as the cost function is minimized.

However, the ECD approach to source modelling is limited to a small number

of sources (one or two), since it becomes significantly dependent on the a priori
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specification of the number and differing allowable properties of the ECD sources.

A method of source localization better suited to the case of distributed source

activity (i.e. more than one or two focal generators of neural activity located in

separate regions of the brain) is the beamformer model. A beamformer can be

thought of as a set of spatial filters, which are defined for each position on a pre-

specified cortical grid. Each filter is selected to act on the sensor measurements

by projecting maximum power to its corresponding source position and minimizing

source activity elsewhere [9, 12]. Both methods require the model of the conductive

properties of the head, which could range from a simple spherical approximation

to a more sophisticated boundary element model constructed from anatomical data.

For this reason, functional MEG mapping data is often combined with structural

information acquired during magnetic resonance imaging (MRI) for more accurate

source localization. Moreover, interpretation of functional MEG maps requires the

location of source activity relative to the underlying anatomical structures, so MRI

data is typically used for visualization. In Fig. 1.1, localization of a single focal source

is shown for both methods and overlaid on anatomical data from an MRI scan. In

this case, both methods localize activity to the similar regions of the right occipital

lobe. However, neither method offers a clear interpretation of the spatial extent of

the underlying source.

(a) Single equivalent
current dipole fit

(b) Linearly constrained minimum variance
beamformer (normalized to max. activity)

Figure 1.1: Mapping the right primary visual cortex with two methods of source
localization. Both methods indicate a strong posterior source in the right occipital
lobe approximately 70 ms after a visual stimulus was presented in the right half of
this subject’s field of view.

The resulting source localization may take the form of an activation map in the
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case of distributed source activity or one or several points of source activity in the

case of ECD fitting. While fMRI activation maps may be thresholded to delineate

a statistically significant cluster of source activity, the ill-posed nature of the MEG

inverse problem means that the spatial extent of estimated source activity is more

difficult to interpret. For this reason, the location(s) of peak activity of a beamformer

activation map is typically interpreted as the location of source activity. For either

method of source localization, the location of source activity is co-registered with

anatomical data. It can then serve as a tool for pre-surgical planning – including risk

assessment – and to interactively assist the surgeon using a image guidance system

[3, 5].

1.2 Quality of Magnetoencephalography Data

The following sections will examine the causes of poor MEG data quality, standard

quality assurance protocols, and potential approaches to quantitative quality

assurance. In particular, I will discuss the need for well-defined and broadly applicable

quality assurance measures during MEG data acquisition and processing. Our local

imaging centre has experienced data losses on the order of 10% during MEG research

studies due to quality issues. Extending this estimate to clinical cases is difficult

due to low patient throughput, but our experience suggests that low quality mapping

data could be acquired for a significant percentage of the patient population. In

a clinical scenario, acquiring low quality mapping data could require a patient to

return for a second imaging session since quality issues may not be discovered until

after data has been processed. Moreover, these scans are typically rejected on the

basis of operator inspection, rather than a quantitative assessment. This raises the

problem of reproducible and consistent assessment of data quality.

1.2.1 Causes of Poor Data Quality and Compensatory Techniques

Collecting high quality MEG data is often challenging, in large part due to the minute

scale of magnetic fields corresponding to neural activity. Although it is preferable to

make good quality measurements during data collection, it is possible to compensate

for many data quality issues during data analysis. This section will present an

overview of common MEG data quality issues and discuss mitigating techniques.
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Non-Physiological Artefacts

Environmental generators of magnetic field fluctuations (i.e. environmental noise) are

a significant issue when measuring neuromagnetic activity; MEG signals are typically

on the order of 10-100 fT and can be significantly obscured by competing magnetic

signals. Although MEG data is acquired in a magnetically shielded room, shielding

limitations along with sources of noise originating within the room can contaminate

the signal arising from a subject’s neural activity. The movement of nearby machinery,

such as elevators, can also introduce significant signal contamination. Reference

sensors far from the sensor helmet but still within the shielding can be used to suppress

such sources of environmental noise. Effective noise reduction can be achieved by

filtering signals to frequency bands of neurological interest using high-pass, low-pass,

or band-pass filtering. Power-line noise is a common source of signal contamination

which can be addressed with notch filters at the appropriate frequencies (50-60 Hz

and the associated harmonics). High-pass filtering, as well as baseline correction, can

be particularly useful to attenuate low-frequency drifts which may affect the MEG

sensors throughout the scan [13]. During the scan, the operator should closely monitor

sensor measurements to address any artefacts or noisy channels. Data segments

containing overpowering artefactual signals or sensor channels containing significant

noise can be rejected manually or using automatic detection [14] after the scan.

Magnetic artefacts resulting from magnetic materials moving within the room

such as clothing, cosmetics, dental or medical implants can have a significant impact

on MEG recordings. An initial artefact scan should be performed to detect potential

magnetic artefacts, which typically appear as large low frequency changes in the

data and can be associated with patient motion or blinking. In some cases the

source of the artefact can be eliminated after detection (e.g. by removing cosmetics),

but this is not always possible. The strong magnetic fields encountered during

MR imaging can further exacerbate these sources of noise, but demagnetization can

reduce this effect [15]. Sensors which are significantly impacted by these magnetic

artefacts can be removed from data analysis. Another method of compensation for

artefactual signals is signal space separation (SSS), which decomposes magnetic field

readings into the combination of two linearly independent expansions of harmonic

functions corresponding to signals generated either inside or outside the sensor array.
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Signals from fields generated inside the sensor helmet can be retained, while signals

originating from artefactual sources outside can be removed from the data. While

SSS cannot typically suppress artefacts originating close to the sensor helmet [16],

temporal signal space separation (tSSS) is well-suited to remove these sources of

noise from the sensor data [17]. In these cases, complex artefactual signals which

may ‘leak’ into both parts of the SSS model can be detected by searching for similar

temporal patterns in both the internal and external set of fields. Since neurological

signals should be able to be represented by fields originating inside the helmet without

any such leakage, the temporal approach allows the artefactual signals to be removed.

Reconstruction of the signals from missing or problematic sensors and compensation

for head movement can also be incorporated into the tSSS procedure [17].

Physiological Artefacts

Aside from neural activity, many other biological processes are capable of generating

strong magnetic fields. For example, electrical activity in the heart can generate a

magnetic field more than ten times larger than neuromagnetic signals of interest

[18]; contractions in muscles close to the MEG sensor array can also generate

electrophysiological activity strong enough to contaminate neuromagnetic signals.

The eyeball, itself an electrical dipole, can also be the source of large artefacts in

MEG readings. Blinks can cause current flow along the inner eyelids and change the

geometry of the surrounding conductive volume, while vertical and horizontal eye

movements affect the signal differently based on the motion of the eyeball within

the conductive volume [19]. Artefacts resulting from cardiac activity cannot be

suppressed, but can be removed after data acquisition is completed [16]. For this

reason, electrocardiogram (ECG) measurements should be acquired during the scan as

a reference for artefact rejection. Likewise, electro-oculogram (EOG) measurements

should be acquired for the removal of eye movement/blink artefacts, as well as

electromyogram (EMG) measurements when appropriate [14]. These physiological

signals tend to be systemic, affecting multiple sensors, and are best removed from

the MEG data using spatiotemporal independent component analysis (ICA). This

approach decomposes a signal into separate, linearly-mixed sources by maximizing

statistical independence of the signal’s components. Once separated, artefactual
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sources may be discarded. Classification of sources as artefactual may rely on

expecting physiological sources (typically much stronger than neurological sources) to

exceed a set threshold, looking for correlations with recorded ECG, EOG, and EMG

data, or manual inspection [13].

Patient Behaviour

Even after the previously described noise reduction and artefact removal techniques,

the signal-to-noise ratio (SNR) of the MEG signal is still very low. This can be

improved by collecting more trials, since the signal-to-noise ratio of an evoked response

will benefit from averaging over a greater number of epochs. However, there is a

potential tradeoff: while a longer scan could improve SNR and facilitate rejection of

trials containing artefacts, it could also increase patient movement or noncompliance.

Head movement is another prominent data quality issue, particularly in patient

populations who may find prolonged stillness demanding. Since the magnetic field

detected is proportional to the inverse square of the distance from the source, subject

motion during the scan changes the sensitivity of the sensors to different regions within

the brain. Further, systemic head movement over the course of a scan can significantly

decrease the accuracy of co-registration between anatomical and functional data,

resulting in inaccurate source localization. While head movement corrections can

be applied in post-processing, head position indicator coils should be used to monitor

head movement during the scan and reposition the patient if necessary [20]. As

previously mentioned, issues with patient motion can be exacerbated by lengthy scans,

as patients grow tired or restless.

Patient task performance is unique among data quality issues in that it directly

affects the underlying neural activity, and cannot be corrected for after the scan.

Passive stimuli, which activate regions of the brain without requiring a patient to

actively perform a task, may still require a patient to remain still or limit eye

movement. However, active tasks require a patient to respond to a stimulus in a well-

defined and consistent way across trials. Patient attention to stimuli and focus on task

performance can directly affect the quality of the evoked response. Even with high

engagement, patient task performance may suffer due to confusion over instructions

or physical or cognitive impairments. During the scan, the operator should monitor
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participant behaviour, including motion and task performance. Depending on the

mapping paradigm, different measures to monitor task performance may be suitable

beyond basic monitoring via camera and intercom. Performance could be integrated

within the task itself, such as real-time performance logging for a button response task.

For motor tasks, EMG data can be used to monitor the amplitude and reliability of

the desired muscle activity. For passive stimuli or resting scans, EOG measurements

can serve as an early indication of participant drowsiness.

1.2.2 Conventional Quality Assurance

In general, quality assurance (QA) procedures for MEG data acquisition and analysis

require significant operator oversight. While qualitative protocols to detect and

compensate for artefacts at scan time were addressed in the previous section, this

section will discuss measures of data quality.

Data analysis typically begins with a visual assessment of data quality [16].

Evoked responses can be visualized by averaging data across trials and inspecting

sensor topographies at periods of strong magnetic field deflections. The presence

of artefacts, which could appear as noise masking expected peaks or as unexpected

patterns of topography, may guide the operator’s data processing choices, leading

to the use of one or more of the compensatory techniques discussed in the previous

section. As data analysis continues, several quantitative indications of data quality

can be calculated. Peaks in the global field power (GFP) corresponding to the timing

of expected responses can serve as an early indication of good data quality. However,

it is also typical to report data quality following source localization with an ECD

model, using dipole fitting metrics such as goodness of fit or the confidence volume.

Goodness of Fit

The quality of source localization performed with an ECD model is quantified by its

goodness of fit, which can be thought of as the percentage of sensor variance predicted

by that model. This is maximized during the fitting process described in section 1.1.3.

Mathematically, goodness of fit GoF may be calculated by

GoF =
[
1−

∑n
i=1(si − ŝi)2∑n

i=1 s
2
i

]
× 100% (1.3)
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where si represents the measurement made by the ith of n channels and ŝi represents

the corresponding measurement predicted by the ECD forward solution. Fig.

1.2 provides an example of the difference between predicted and measured field

measurements for a simple ECD model.

Figure 1.2: After localizing the right primary visual cortex with an ECD model, the
difference between the measured and predicted field measurements can be quantified
by goodness of fit. In this case, the dipolar source shown in Fig. 1.1 (a) accounts for
60% of sensor variance in the measured data.

For mapping paradigms that elicit only one or two focal dipolar topographies in

the evoked field data, source activity can be well represented by one or two ECDs,

so this metric acts as a useful surrogate for data quality. In this case, lower goodness

of fit values indicate the presence of noise, unwanted sources of activation, or that

the source of the activity does not fit the assumption of the ECD model (e.g. a

spatially extended source). However, it is clear that this metric also depends on the

appropriateness of the selected ECD model. The number of dipolar sources must

be specified a priori, and allowed orientations or positions may also be defined by

the MEG operator. Moreover, the goodness of fit (GoF) of a given ECD model can

also depend on data acquisition parameters such as the number and type of channels

(magnetometers vs. gradiometers), which can complicate the interpretation of the

calculated goodness of fit value [16]. While most MEG reporting guidelines suggest

reporting goodness of fit when an ECD model is used [14, 16], there is no universal

threshold corresponding to ‘good’ data. Suggested goodness of fit criteria ranging

from 70% to 90% have been reported in the literature [10, 21].
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1.2.3 Intra-Session Reliability Measures

The previous sections have described the causes of poor data quality for task-based

MEG scans and standard quality assurance practices to detect and address data

quality issues. In large part, these standard quality assurance protocols are based

on identifying well-defined effects of data quality issues which cause data to deviate

from an expected result. This is largely performed by the operator, who is expected

to recognize artefacts which may obscure the desired response and compensate

accordingly during acquisition or processing. The main quantitative measure of

data quality, dipole goodness of fit, is a further example of this approach to quality

assurance. Goodness of fit is only an effective measure of data quality when an ECD

model can be assumed to appropriately model data. Since it is based on assumptions

about the number and properties of the underlying ECD sources, it relies on expert

users and can be subject to inter-rater differences. In this section, I will describe a

different approach for assessing data quality, which relies on fewer assumptions about

the properties of ‘good’ MEG functional mapping data. This approach is rooted in a

more general definition of data quality, expressed by two fundamental characteristics:

accuracy and reliability.

In the context of source localization with MEG, accuracy is defined as the closeness

of a measured source to the location of ‘true’ activation. Measuring accuracy therefore

requires a comparison with a known ground truth. This poses a problem for non-

invasive functional imaging techniques. The gold standard for the identification of

brain function is direct electrical cortical stimulation, which is inherently invasive.

While this rules out accuracy as a useful MEG quality metric, previous studies

comparing MEG functional maps to results obtained during intra-operative electrical

cortical stimulation have calculated MEG’s accuracy to be on the order of millimeters

for focal brain mapping in relevant clinical populations [3, 6, 22]. In contrast,

reliability (sometimes characterized as repeatability or variability) is a more easily

measured property of data. Inter-session reliability is a measure of the closeness of

sources identified for the same paradigm in the same patient in different sessions. In

general, repeated scans are not clinically feasible in the patient population, although

at least one imaging centre has reported performing two replications of mapping

paradigms in a single session for pediatric patients [23], with the overall effect of
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increasing the number of trials. Previous MEG studies have characterized an average

inter-session reliability on the order of 3-8 mm for typical focal mapping paradigms

[24, 25], though values up to 75 mm were measured for distributed sources relevant

to language mapping [26]. It should be emphasized, however, that these estimates

of accuracy and inter-session reliability were calculated in MEG data without any

known quality issues, so they do not provide insight into what could be expected

for a single scan of unknown quality. Given that most patients receive only a single

scan, it would be useful to assess the reliability within the scan, rather than between

multiple sessions.

In recent years, a novel approach has emerged to assess the intra-session reliability

of task-based MEG data. A single scan, once segmented into epochs, can easily be

divided into two split-half datasets. This technique was first used to estimate the

reliability of independent components detected in EEG and MEG data [27], but can

be used more generally to approximate two separate scans. The following sections

describe three measures which quantify intra-session reliability using this split-half

technique.

Receiver-Operator Characteristic Reliability Analysis: the Reliable

Fraction

The receiver-operator characteristic reliability (ROC-r) framework was developed to

evaluate the quality of fMRI activation maps and to provide an automated method

of activation threshold selection by Stevens et al., who later extended the ROC-r

approach to MEG data [28, 29]. Since the framework is based on the comparison of

two functional maps obtained from a test and retest dataset, a split-half approach was

well-suited to single scan MEG data. The retest dataset is subjected to a receiver-

operator characteristic (ROC) analysis, with the test dataset serving as a surrogate

for true activation. In this pseudo-ROC framework, voxels active in both the test

and retest maps are considered true positives while voxels active in only the test

map are false negatives, allowing for the calculation of the true positive rate (TPR).

Likewise, voxels inactive in both the test and retest maps are true negatives while

voxels active in only the retest map are false positives, allowing for the calculation

of the false positive rate (FPR). By calculating the sensitivity (TPR) and specificity
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Figure 1.3: Overview of the receiver-operator characteristic reliability analysis
framework:

(A) After standard pre-processing, MEG data is segmented into epochs based on
event timing. Epochs are randomly sorted into test and retest sets.

(B) At a single time point, test and retest activation maps are created for equally
spaced thresholds ranging from zero to the maximum of both maps.

(C) Pseudo ROC curves are obtained from the overlap between test and retest maps.
At a given threshold, the test map is considered to represent ‘true’ activation,
while the classification sensitivity and specificity for the retest map is then
calculated over all thresholds. This process is repeated for all test thresholds.

(D) Area under each ROC curve (AUC) is plotted as a function of test threshold.
The reliable fraction is defined as the fraction of test thresholds for which the
AUC curve is greater than 0.75.
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(1 - FPR) of a binary classifier corresponding to the retest dataset at a range of

retest map thresholds, a pseudo-ROC curve is generated. The shape of this curve

is highly dependent on the threshold chosen for the test dataset. As for traditional

ROC analysis, a higher area under the ROC curve represents a better classifier,

since there is less tradeoff between sensitivity and specificity. An area of one half

would correspond to a completely arbitrary classification, while an area of one would

correspond to a perfect classifier. In this case, the better the classifier, the closer the

agreement between the test and retest datasets. If the test and retest datasets are

highly similar, high-area ROC curves will be generated for a wide range of test dataset

thresholds. This premise can be used to calculate a metric for intra-session reliability:

the reliable fraction (Fr), defined as the fraction of test dataset thresholds for which

the area under the ROC curve is greater than 0.75. Since the agreement between test

and retest datasets is to some extent dependent on the original assignation of split-

halves, the reliable fraction is typically averaged over a number of split-half divisions

for greater stability. A schematic overview of this framework is presented in Fig. 1.3.

Stevens et al. validated the preliminary use of reliable fraction as a quality metric

in a small MEG dataset mapping the somatosensory cortex in healthy subjects

[29]. In particular, they found that reliable fraction correlated well across time

with goodness of fit and proposed the use of reliable fraction as a promising quality

metric for cases poorly suited to goodness of fit, such as distributed brain activity.

A subsequent longitudinal MEG study examining the use of reliable fraction for

automated processing pipeline selection found that choosing a processing pipeline

which maximized the reliable fraction also minimized inter-session variability in

localization [30]. Reliable fraction has emerged as a strong candidate for a broadly

applicable MEG quality metric in these early studies, but it has not yet been validated

across a wide range of pre-surgical mapping paradigms or in the case of known data

quality issues.

Dice Similarity Coefficient

At its core, the receiver-operator characteristic reliability technique can be viewed as

a framework for comparing two activation maps. It was created in part to address a

significant shortcoming in overlap coefficients: the requirement for a specific threshold
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at which to make a comparison. Nonetheless, two overlap coefficients – the Dice and

the Jaccard – have been frequently used by the functional neuroimaging community to

assess agreement of test and retest activation maps. The two coefficients are closely

related, although the Dice coefficient is more commonly used to assess reliability

[31]. The Dice coefficient [32], first used to calculate fMRI test-retest reliability by

Rombouts et al. [33], is defined as the number of active voxels which overlap for

both datasets divided by the average number of active voxels across both datasets. It

ranges from 0 (no agreement) to 1 (perfect agreement). The Dice coefficient has since

been widely used to compare functional and anatomical images, from evaluating image

segmentation quality [34, 35] to estimating the reliability of fMRI mapping paradigms

[31, 36]. However, as for goodness of fit, there is no single established criterion for a

‘good quality’ overlap. Moreover the selection of varying thresholds at which to assess

overlap has made meaningful comparison difficult across fMRI studies [31]. Although

non-traditional in the fMRI community, it is possible to calculate the Dice similarity

coefficient in its more general form to compare the agreement between two continuous

vectors:

D =
2|x · y|
|x|2 + |y|2

(1.4)

In this thesis, I will test this threshold-independent version of the Dice similarity

coefficient as a potential intra-session reliability metric.

Pearson Correlation Coefficient

The Pearson correlation coefficient, though rarely used to compare functional images

directly, is one of the most popular statistics for measuring the association between

two vectors. It can be interpreted as the covariance of two vectors divided by their

standard deviations, and is calculated by

P =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(1.5)

Traditionally, fMRI studies have preferred the intra-class correlation coefficient

[31], partially to allow the comparison of more than two images, but also because

unlike intra-class correlation, Pearson correlation is mean-subtracted and measures

correlation in the case of a linear relationship between vectors [37]. Since for the
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purposes of functional mapping, the locations of peaks within MEG beamformer

maps are more relevant than the magnitude of estimated activity, this latter quality

is advantageous for comparing MEG datasets for pre-surgical mapping. The Pearson

correlation coefficient is thus a clear candidate for an intra-session reliability metric.

Unlike the previously discussed metrics, the Pearson correlation coefficient ranges

from -1 (perfect anti-correlation) to 1 (perfect correlation). However, I expect to

calculate only positive values ranging from 0 (no correlation) to 1 for split-half data,

because it is the extent (rather than the existence) of similarity between the two

split-half maps that is in question.

1.2.4 Quality Assurance Measures: Summary and Context

Table 1.1 provides an overview of the four MEG quality metrics described in the

preceding sections. Crucially, while goodness of fit (along with its ECD counterpart,

confidence volume) is the only metric in clinical use, it is neither operator independent

in the case of multiple sources or useful in the case of distributed brain activity.

The purpose of this thesis is therefore to put forward reliable fraction as a novel,

universally-applicable quality metric for task-based MEG data. Reliable fraction will

be examined alongside the Dice and Pearson coefficients to provide context for other

methods which may be suitable for judging similarity between split-half activation

maps.

Metric
Clinical standard Intra-session reliability

Goodness of fit Reliable fraction Dice coefficient Pearson correlation

In clinical use? Yes No No No

Operator independent? No Yes Yes Yes

Works for distributed activity? No Yes Yes Yes

Table 1.1: A comparison of use cases and considerations for ECD goodness of fit and
the three proposed intra-session reliability metrics.

1.3 Research Objectives

The primary objective of this thesis is to evaluate the performance of reliable fraction

and other possible intra-session reliability metrics as a measure of data quality for

pre-surgical maps acquired with MEG. To do so, I will compare the ability of goodness
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of fit, reliable fraction, and the Dice and Pearson coefficients to distinguish between

‘good’ and ‘poor’ MEG datasets. This thesis will particularly focus on the use of

the reliable fraction and the ROC-r analysis framework for quality assurance in the

case of focal sources in order to justify the future application of this approach to

distributed sources. The Dice and Pearson coefficients will be tested alongside the

reliable fraction as competing intra-session reliability measures, while goodness of fit

will provide a reference as an established quality metric.

1.3.1 Data Quality Manipulation

MEG scans will be acquired using established pre-surgical mapping paradigms to

localize the primary somatosensory, motor, visual, and auditory cortices in twelve

healthy subjects. For each subject and paradigm, each MEG scan will be acquired

twice: once in a standard ‘good’ condition, and once in a ‘poor’ condition where the

data is manipulated by simulating quality issues such as those discussed in section

1.2.1.

I hypothesize that across all subjects and paradigms, all quality assurance metrics

will measure higher values for scans acquired in the good condition than for those

acquired in the poor condition at times when an evoked response is present in the good

data. This hypothesis (hereon referred to as Hypothesis 1) relies on two separate

assumptions:

1. The proposed manipulation of task performance and/or scan condition will

significantly decrease the quality of source localization as compared to data

acquired normally.

2. Both goodness of fit and the previously discussed intra-session reliability metrics

will be sensitive to the expected changes in data quality.

1.3.2 Intra-Session Reliability Metric Performance

The most important component of this work will be to benchmark the performance

of the three intra-session reliability metrics against the more established data quality

measure: goodness of fit. This comparison is only possible in the case of focal sources

where dipole fitting is an appropriate method of localization. This work therefore
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has the potential to inform the further application of intra-session reliability metrics

in the case of distributed sources. As discussed in section 1.2.4, these metrics could

fill a significant void in MEG quality assurance for complex source patterns. Thus,

this thesis aims to assess the potential of the best-performing intra-session reliability

metric as a universal MEG quality assurance measure.

Across all paradigms, I hypothesize that reliable fraction will measure the most

significant separation between good and poor data (as compared to the three other

metrics). This comparison will be performed on both a group level and for individual

subjects. This hypothesis can therefore be separated into two complementary

predictions (for each paradigm). Hypothesis 2.1: I predict that a significantly

larger change in reliable fraction will be found between all good and poor datasets

across the group, as compared to goodness of fit and the Dice and Pearson coefficients.

Hypothesis 2.2: I predict that when examining the significance of the change in each

metric at a single-subject level, reliable fraction will measure the largest difference

between good and poor datasets across all subjects, as compared to the other metrics.

These predictions are largely based on two assumptions:

1. Averaging intra-session reliability metrics across multiple split-half datasets will

reduce variability in these metrics, resulting in a more significant difference

between good and poor data than that measured with goodness of fit.

2. Reliable fraction will be more sensitive to changes in the higher activity regions

of the data than the Dice or Pearson coefficients, corresponding to a greater

separation between good and poor data.

Thus, this thesis will lay the groundwork for the implementation and validation

of a universal MEG quality assurance measure based on intra-session reliability, with

the eventual goal of ensuring high quality pre-surgical mapping data is acquired for

each patient.
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Methods

2.1 Participants

This study was approved by the IWK Health Centre Research Ethics Board; all

participants provided informed written consent. Eleven healthy adult participants

underwent scans which were included in this study (6 female, ages 29.0± 10.3 years),

including one participant who reported an ongoing mild psychiatric disorder during

pre-screening which would not impact the responses of interest for this study. An

additional two participants were involved in scans for this study, but one participant

was found to be unsuitable at scan time due to the presence of a large dental

implant, and one participant’s data was excluded from all analysis post-collection

due to an issue with equipment at scan time. Participants were each tested with the

Edinburgh Handedness Inventory [38] and found to be right-handed for ten of the

eleven participants and left-handed for one participant.

2.2 Experimental Paradigms

Data analyzed in this thesis were collected as part of a study examining the

performance of the ROC-r analysis framework across somatosensory, motor, visual,

and auditory pre-surgical mapping paradigms with manipulated data quality. Each

participant underwent MEG mapping procedures based on clinical practice guidelines

[10] to localize the primary somatosensory, motor, visual, and auditory cortices for

the right side of the body, as well as a wakeful resting scan. Due to difficulties in

consistently eliciting the desired motor and auditory responses across all subjects, this

thesis compares the performance of metrics discussed in Chapter 1 for somatosensory

and visual data only.

Data quality was manipulated differently for each mapping paradigm; the relevant

details of data quality manipulation will be discussed in the following sections. For

19
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each paradigm, each participant was scanned once according to standard clinical

procedures (from here on referred to as the ‘good’ condition) and scanned once

following the same procedures with the addition of a specific action to deliberately

decrease data quality (from here on referred to as the ‘poor’ condition). The twelve

subjects scanned were divided into two groups of six. One group of six first underwent

scans in the good condition followed by scans in the poor condition for each paradigm.

For the second group, the order of the ‘good’ and ‘poor’ scans were reversed to mitigate

the potential effects of repeated participant experience on data quality. The order of

scans for each group is shown in Table 2.1.

Group 1 Group 2 Scan Length Number of Trials

Somatosensory

Good Condition Poor Condition 1.5 minutes 400

Poor Condition Good Condition 1.5 minutes 400

Motor

Good Condition Poor Condition 7 minutes 100

Poor Condition Good Condition 7 minutes 100

Visual

Good Condition Poor Condition 1 minute 100

Poor Condition Good Condition 1 minute 100

Auditory

Good Condition Poor Condition 3 minutes 100

Poor Condition Good Condition 3 minutes 100

Rest 5 minutes N/A

Table 2.1: Scan order and approximate duration for participants in study.

2.2.1 Somatosensory Paradigm

Localization of the primary somatosensory cortex (S1) was achieved by weak electrical

stimulation of the participant’s right median nerve. Using a DS7A Constant Current

Stimulator (Digitimer, Hertfordshire, UK), a pulsed voltage was applied through two

electrodes positioned on the surface of the participant’s skin across the right median

nerve. Prior to application, the electrodes were soaked in a saline solution to improve

electrical conduction. Voltage, current, and the positioning of the two electrodes were
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adjusted to elicit a slight thumb twitch, a standard indication of successful median

nerve stimulation (MNS). Stimulus timing was controlled by the Presentation software

(Neurobehavioural Systems Inc., Berkeley, CA). The participant was instructed to

look at a fixation cross presented in the participant’s central field of view during the

scan in order to limit eye and head movement. In total, 400 stimuli were presented

at 217 ms intervals.

In the poor condition, the quality of somatosensory mapping data was

manipulated by attaching a small magnetized piece of metal (1 cm section of paper

clip) to the outside of each participant’s lower left jaw with adhesive tape. This

simulated a magnetic artefact similar to that which might result from a metallic

dental implant, increasing noise levels in the recorded signal.

2.2.2 Motor Paradigm

Localization of the right primary motor cortex (M1) was achieved by visually-cued

abduction of the participant’s right index finger. The participant was instructed to

look at a fixation cross presented in the participant’s central field of view during

the scan, and to quickly move their right index finger toward their thumb when

the fixation cross turned yellow. The last three fingers of the participants hand

were secured to each other with tape to restrict undesirable movement. The right

index finger was attached to the right middle finger with elastic to facilitate a short

movement during the abduction and quickly return the index finger to its default

position. Electrodes were positioned across the right first dorsal interosseous muscle

to monitor participant response. In total, 100 stimuli were presented at intervals

ranging from 3.5-4.5 seconds.

In the poor condition, the quality of motor mapping data was manipulated by

directing the participant to simulate non-compliance. The participant was verbally

instructed to misperform the task by responding to the visual stimulus by selecting

one of the following behaviours at random:

• No finger movement

• Delayed and/or prolonged abduction of the right index finger

• Abduction of the left index finger
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• Abduction of both the right and left index fingers

As discussed in section 1.2.1, task non-compliance is a significant source of data

quality loss in clinical populations, particularly for young patients or those with

intellectual, physical, and/or neurological disabilities. The simulated poor task

performance was expected to result in possible mapping of the left primary motor

cortex and a more general loss of signal-to-noise in the evoked response.

2.2.3 Visual Paradigm

Localization of the right primary visual cortex (V1) was achieved using a hemifield

checkerboard (twelve vertical and eighteen horizontal checks; 1.4±0.1 cm side length

per check) reversal pattern projected onto the right side of a viewing screen (at

approximately 1 m distance from participant). To present a visual stimulus, the

position of the black and white checks in the checkerboard was reversed at 500 ms

intervals (i.e. checkerboard flickering at 2 Hz), with 100 stimuli presented in total.

In the good condition, the participant was directed to look at a centrally positioned,

stationary fixation cross during stimulus presentation to ensure maximal activation

of the right visual field only.

To modulate data quality in the poor condition, the fixation cross moved around

the viewing screen. After beginning in the centre of the viewing screen, the position

of the fixation cross was shifted every five seconds in non-sequential order to one of

seven different locations. These positions corresponded to the four corners of the

viewing screen and the centres of the left, right, and bottom edges of the screen.

Participants were instructed to follow the cross with their eyes, causing a disruption

in the focal retinotopic mapping of the stimulus such as that which might occur

due to a lack of participant engagement or confusion regarding the instructions. As

discussed in section 1.2.1, we expected this manipulation to activate multiple regions

of the primary visual cortex, resulting in a weaker, non-focal activation pattern in

the evoked response. This extended activation would limit accurate localization of

the visual response.
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2.2.4 Auditory Paradigm

Localization of the primary auditory cortex (A1) was achieved by presenting a 500

ms pure 1000 Hz tone to the right ear at 80 dB SPL using EARTone 3A transducers

connected to an audiometer. White noise was continually presented to the left ear at

55 db SPL. In the good condition, the participant was instructed to look at a fixation

cross presented in the participant’s central field of view during stimulus presentation

to limit eye and head movement. In total, 100 stimuli were presented at one second

intervals.

To modulate data quality in the poor condition, the fixation cross moved around

the viewing screen to the same positions as in the poor condition for the visual

paradigm, but at fifteen second intervals. Participants were instructed to follow the

cross with their head, simulating head movement such as that which might occur due

to participant restlessness or confusion regarding the instructions. We expected this

manipulation to cause variability in the sensitivity of the sensors to the underlying

activity over time, resulting in a non-focal activation pattern in the evoked response.

This extended activation would limit accurate localization of the auditory response.

2.2.5 Rest Paradigm

Participants were instructed to remain still with their eyes open by focusing on a

centrally-presented fixation cross while five minutes of resting-state data was acquired.

This data was not used in this thesis.

2.3 Data Acquisition

Each participant in this study received an MEG scan and structural T1-weighted

MRI scan. For all but two participants both scans were performed on the same day;

the order in which the scans were acquired varied from subject to subject.

2.3.1 MRI Scan

Participants were scanned using a 3.0T GE MR750 system (GE Healthcare,

Waukesha, WI) to obtain anatomical information for accurate source estimation

and data overlay. For each participant, an initial three-plane localizer scan (25 s
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acquisition time) with ten slices (8 mm thickness) in each direction was acquired to

plan subsequent scans. We then acquired a structural T1-weighted scan (7:07 min

acquisition time) using a sagittal-oriented BRAVO sequence (TI=450 ms, TR=6.2 s,

TE=2.3 ms, flip angle=12, NEX 2 with acceleration of 2 in phase direction) with 184

slices (1 mm isotropic resolution).

2.3.2 MEG Scan

Prior to participant preparation, an artefact scan was briefly acquired to ensure no

artefactual signals would introduce noise to subsequent data collection. Following

this, each participant underwent preparation for the MEG scan. To track head

movement during the scan, four head position indicator (HPI) coils were attached

to the head. Two were placed on the forehead near the hairline, and two on the

mastoid behind the right and left ears. The location of these HPI coils were digitized

using the Isotrak system (Polhemus, Colchester, VT). The nasion, the right and left

preauricular points, and 200 additional points along the forehead, nose, and scalp

were also digitized. Electrodes were positioned on both upper arms to record the

electrocardiogram, and on the left collarbone to record a ground signal. Vertical eye

movement was monitored with EOG electrodes above and below the left eye, while

horizontal eye movement was monitored with EOG electrodes at the outer corner of

both eyes. As previously discussed (section 2.2.2), EMG data was acquired during

motor mapping to monitor subject task performance.

MEG data was acquired with a 306 channel MEG system (Elekta Neuromag Oy,

Helsinki, Finland). MEG, electrophysiological data, and event markers corresponding

to stimulus presentation were acquired continuously at 2500 Hz with an 833 Hz in-

line lowpass filter and recorded for off-line analysis. Head movement was tracked

continuously with HPI coils activated at frequencies greater than 250 Hz. As

summarized in Table 2.1, each participant underwent a series of mapping paradigms

followed by a 5 minute eyes-open wakeful resting scan. This was followed by a 5

minute empty room scan to account for environmental noise.
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2.4 MRI Data Processing

The structural T1-weighted MRI data was reconstructed and segmented using the

open source FreeSurfer image analysis package (Martinos Center for Biomedical

Imaging, Charlestown, MA; [39, 40, 41, 42, 43, 44, 45, 46]). This data was co-

registered with the head digitization data acquired prior to the MEG scan using the

vendor-supplied MRILab graphical user interface (Elekta Neuromag Oy, Helsinki,

Finland). In particular, the nasion and preauricular points were visually identified on

the reconstructed anatomical image and used as landmarks for initial co-registration.

The co-registration was then adjusted to best align the remaining digitization points

along the surface of the head.

As discussed in the previous chapter, subject-specific anatomical data can be

used to improve accuracy in source localization. To do so, using the FreeSurfer

analysis package, a boundary element model (BEM) was created for each participant

for accurate source estimation. Additionally, a volume source space consisting of

approximately 12000 voxels on a 5 x 5 x 5 mm grid at which to calculate beamformer

solutions was defined within the brain.

2.5 MEG Data Processing

The following section describes the MEG processing pipeline used for noise reduction

and source localization for each mapping paradigm. In general, MEG data for

each subject was processed according to accepted clinical guidelines [10] to create

beamformer maps of activation for each paradigm and performance. With the

exception of the inital tSSS, all analysis was conducted with MNE Python (version

0.16.2).

Parameter Somatosensory Motor Visual Auditory

High-pass filter (Hz) None 1 1 1

Low-pass filter (Hz) 330 40 40 40

Power-line notch filter 60 Hz intervals None None None

Epoch interval (ms) (-100, 100) (-600, 500) (-200, 300) (-200, 300)

Baseline correction interval (ms) (7, 14) (-500, -400) (-50, 0) (-100, -50)

Beamformer active interval (ms) (0, 100) (-200, 200) (0, 200) (0, 200)

Beamformer noise interval (ms) (-100, 0) (-600, -200) (-200, 0) (-200, 0)

Table 2.2: Parameters used for MEG data processing for each pre-surgical mapping
paradigm. Intervals are defined with respect to stimulus presentation.
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2.5.1 Initial Pre-Processing

Temporal signal space separation was applied to all MEG data in order to reduce

environmental noise. This was carried out using the vendor-supplied software

MaxFilter (version 2.2, Elekta Neuromag Oy, Helsinki, Finland). Additionally,

frequency filtering was applied to restrict data for each paradigm to the frequency

bands of interest. Filter parameters are detailed in Table 2.2. Data were down-

sampled to 1000 Hz to reduce processing time.

2.5.2 Data Epoching

In this study, stimulus timing was controlled by the Presentation software

(Neurobehavioural Systems Inc., Berkeley, CA); however, the projection system

exhibited a delayed response to the electronic stimulus timing reported by the

Presentation software. A correction for visually-cued stimulus timing was therefore

found by measuring the voltage induced in a photodiode attached to a checkerboard

square projected onto the participant viewing screen. Prior to participant scans, a

test of the visual paradigm design found a delay of 34.2± 0.3 ms between the actual

stimulus times and the times reported by the Presentation software. This delay was

therefore accounted for by adding a constant offset of 34 ms to the reported stimulus

time. Likewise, a delay in median nerve stimulation of 2 ms was accounted for by

adding an offset to the reported time. Stimulus timing for motor data was determined

using the EMG channel to find the onset of muscle activity corresponding to task

performance in the good condition. For all paradigms, the recorded or calculated

stimulus timing was used to segment the data into epochs of time surrounding each

trial, using the epoch interval times shown in Table 2.2.

2.5.3 Data Averaging

For this study, we used the fastICA algorithm [47] implemented in MNE-Python to

remove spatiotemporal patterns in the MEG data likely to be artefacts. Independent

sources were excluded from analysis if the magnitude of the component exceeded

a threshold of 4 pT for magnetometers or 400 pT/cm for gradiometers, or if the

time course of the component was highly correlated with the recorded EOG or ECG
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signals. The MEG data were reconstructed without the excluded components to

generate ‘clean’ MEG epoch data. The epochs were then averaged over all trials

to generate the MEG event-related field (ERF) data. A baseline correction using

paradigm-specific intervals (see Table 2.2) was applied to both the epochs and evoked

(inter-trial average) data. Notably, an interval ranging from 7-14 ms post-stimulus

was chosen for the somatosensory data. While it is more typical to choose a pre-

stimulus interval for the baseline correction, we chose a relatively short post-stimulus

interval to correct for changes in the MEG sensors induced by the MNS electrical

stimulation. This has been shown to reduce distortion of the N20m evoked field

caused by the artefact during electrical stimulation [48], and we found it was more

effective than a pre-stimulus baseline interval at uncovering the expected N20m peak

across subjects.

2.5.4 Source Localization

A distributed source solution was calculated for each dataset using the linearly-

constrained minimum variance (LCMV) beamformer implemented in MNE-Python

[49]. Covariance estimates were calculated from the clean epoched data for the active

interval and noise interval relevant to each paradigm (see Table 2.2). With the BEM

model obtained from the MRI data, we then calculated the LCMV beamformer spatial

filter, as discussed in the previous chapter. The beamformer spatial filter was then

applied to the downsampled ERF data to create an event-related beamformer (ERB)

map with estimates of source activity at each point in the volume source space for

each time sample in the ERF data. The absolute value of estimated activity was

taken to eliminate ambiguity in the dipole orientation and moment.

2.6 Calculating Data Quality Metrics

This section describes the process by which each data quality metric (goodness of

fit, reliable fraction, and the Dice and Pearson coefficients) were obtained for each

subject, paradigm (auditory data excepted), condition, and time point. As discussed

in detail in the following chapter (see in particular sections 4.2.2 and 4.2.4), the

quality of motor and auditory data acquired in the good condition for this study was

deemed insufficient for a fruitful comparison of metric performance. In the case of
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motor data, metric time series were calculated for a preliminary examination of data

quality. For auditory data, no quality metrics were calculated.

2.6.1 Goodness of Fit

To calculate goodness of fit, each dataset was fit with an equivalent current dipole

model. MNE-Python’s mne.fit dipole() was used to fit a single dipole at each time

point in the active interval, using the same boundary element model and covariance

estimates as used for the beamformer solution. For each participant, paradigm,

and condition, the dipole position, orientation, magnitude, and goodness of fit was

therefore obtained a function of time post-stimulus.

2.6.2 Intra-Session Reliablity Metrics

Each of the proposed intra-session reliability metrics (reliable fraction, Dice and

Pearson coefficients) are calculated by comparing the similarity of two activity maps.

For a single task-based MEG scan, these two maps may be generated by randomly

dividing the collected epochs into two split-half datasets (the ‘test’ and ‘retest’

datasets). Since the value of the calculated metric generally depends on the initial

assignation of epochs into the test and retest datasets, the metric calculation is

repeated and averaged across a number of randomly assigned split-half datasets. After

a preliminary investigation, it was determined that in general averaging each metric

over 30 pairs of split-half datasets was sufficient for metric convergence; this number

was used for the calculation of metrics for comparison at the group level as described

in section 2.7.1. A different approach was used to select a number of split-half datasets

for the bootstrap investigation at the single subject level as described in section 2.7.2.

The following section outlines the process by which split-half datasets were generated

and used to calculate the reliable fraction, Dice, and Pearson coefficients for each

time point in the active interval for each participant, paradigm, and condition. This

analysis was implemented in Python 2.7.15.

Having processed the MEG data as described in sections 2.5.1-2.5.3, each set of

epochs was randomly divided into two split-half datasets, which were averaged to

create two evoked datasets. The appropriate baseline for each paradigm was then
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applied to the split-half evoked datasets and the covariance computed using the split-

half epochs as described in sections 2.5.3-2.5.4. Likewise, a distributed source solution

was calculated for each split-half dataset using the LCMV beamformer. For each time

point within the active baseline interval, there then existed two split-half event-related

beamformer maps describing the estimated source activity in each voxel in the volume

source space as a function of time.

The ROC-r analysis framework, as discussed in the previous chapter, assesses the

internal reliability of a dataset by calculating the reliable fraction. This metric is

calculated by first thresholding the ERB maps to classify each voxel as active or

inactive. For each pair of split-half datasets, twenty equally-spaced thresholds were

chosen ranging from zero to the maximum activity present in each dataset. One of the

two split-half ERB maps was then randomly defined to be the test dataset, while the

other was designated the retest dataset. As described in Fig. 1.3, these two datasets

and thresholds were used to generate a set of twenty receiver-operator characteristic

curves, each consisting of twenty data points. The area under each such curve (AUC)

was estimated using rectangular integration. Thus, for each set of split-half datasets,

a set of twenty AUC values varying with the test dataset threshold was plotted as an

AUC vs. threshold curve. As previously defined (Fig. 1.3), the reliable fraction is

the proportion of thresholds for which the AUC is greater than 0.75. This value was

calculated by interpolating the AUC vs. threshold curve to determine the threshold

at which the AUC initially surpassed 0.75 for each pair of split-half datasets.

It is notable that in past works using the ROC-r analysis framework [29, 30],

after an AUC vs. threshold curve had been created, the assignation of the test

and retest datasets was reversed and the process then repeated to create a second

AUC vs. threshold curve. The two curves were then averaged, giving a single AUC

vs. threshold curve for each randomized set of split-half datasets. This thesis takes

a slightly different approach. Since the initial assignment of epochs to the test and

retest datasets is random and reliability results are averaged across multiple split-half

datasets, it was judged unnecessary to repeat the ROC-r analysis with the test and

retest assignations reversed. This halves the computational time necessary for ROC-

r analysis without changing the reported reliability as long as results are averaged

across a sufficient number of split-half datasets (i.e. until the average reliable fraction
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converges across datasets).

The Dice and Pearson coefficients were more straightforward to calculate, and

were obtained at each time point by flattening each three-dimensional ERB map into

a one-dimensional vector. The similarity of the two vectors was then calculated with

Eq. 1.4 to calculate the Dice coefficent and Eq. 1.5 to calculate the Pearson coefficent.

At the end of the described analysis, the value of the goodness of fit, reliable

fraction, Dice coefficient, and Pearson coefficient had been calculated at each time

point for MEG mapping data corresponding to each subject, paradigm, and condition.

2.7 Statistical Analysis

2.7.1 Group Level Comparison

After obtaining goodness of fit vs. time and intra-session reliability metric vs.

time curves (hereafter generalized as quality metric time curves) for each subject,

paradigm, and condition, results were averaged across subjects for qualitative

comparison. However, in general, the value of each quality metric vs. time is of

less clinical utility than the value of each quality metric at the expected response

peak. That is, high data quality should be measured when a focal source is evoked.

This is true for both goodness of fit, which is high when a strong dipolar source

is present, and for intra-session reliability metrics, as such a source should present

a highly reliable activation pattern across epochs. Thus, to compare each metric’s

ability to distinguish between good and poor data quality, I conducted a paired t-test

to evaluate the difference in each metric between the good and poor conditions at the

response peak. This was done separately for both V1 and S1 data.

The general latency of the response peak was determined from the post-stimulus

event-related field data for each subject in the good condition. The average source

pattern was visually inspected for the presence of a strong dipolar source in short time

windows (5-10 ms) with significant ERF activity, particularly those corresponding to

known response peaks (N20m and N75m for the somatosensory and visual responses,

respectively). The precise latency assigned to the response peak was then determined

from the corresponding peak in global field power (GFP), a metric derived from the

spatial standard deviation across sensors at each time point, reflecting the overall
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magnetic field activity at that time. When multiple dipolar sources were present in

the ERF data, I chose the response peak occurring closer to the N20m and N75m

responses which would be used clinically, if present. Latencies found for each subject

and paradigm in the good condition are presented in Table 3.2.

For each subject and paradigm, I extracted the maximum values of each metric

(in both the good and poor condition) within a window centred at the pre-determined

latency. The width of the window was chosen to be approximately 25% of the full

width at half maximum of the GFP peak across all subjects; within these windows the

largest 3 and 8 metric values were extracted for the somatosensory and visual time

curves, respectively. The average peak value for each metric and each condition were

plotted for all subjects for each paradigm. For each metric, the difference between

the average peak value of the metric in the poor condition and in the good condition

was then used for a paired t-test across subjects. This was conducted with the null

hypothesis that any observable differences in the metric between ‘good’ and ‘poor’

data were the result of random variation and the alternative hypothesis that the

metric value in the good condition was significantly higher than the metric value in

the poor condition across subjects.

2.7.2 Single Subject Comparison

To determine the statistical power of each metric to distinguish between good and

poor data at the single subject level, I implemented bootstrapping to estimate the

stability of each metric. A similar use of the nonparametric bootstrap was used by

Darvas et al. to examine variability in equivalent current dipole localization [50].

Since task-related MEG data is composed of a number of epochs which are then

averaged to create a single dataset, it is straightforward to use random resampling

with replacement to generate bootstrap datasets. For any measure calculated on the

original dataset, a bootstrap distribution can be generated by repeatedly calculating

the measure for a number of bootstrap datasets, providing an estimate of the

measure’s variability [51].

Since this process is time consuming, I chose a single time point at which to

perform bootstrapping for each metric. This was selected as the time at which each

metric reached its greatest value (in the original metric vs. time series) in the good
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condition within the response peak window defined in the previous section. This

time point, while potentially varying from metric to metric, was chosen in order to

compare metrics at a point of optimal separation between good and poor data. The

selected time points are provided in Table 3.5.

In practice, bootstrapping is often performed until the distribution of interest

converges [52]. After an initial investigation into metric convergence across bootstrap

datasets (see Fig. 3.12 (a)) indicated that variance in some metric distributions could

increase indefinitely as bootstrapping continued, analysis was limited to 120 bootstrap

datasets for each subject in the interest of time.

For each bootstrap dataset, dipole fitting was performed and split-half datasets

were generated as described in section 2.6. Intra-session reliability metrics were

calculated as previously described, with one notable change. Instead of averaging

each metric across 30 split-half datasets, each metric was calculated for as many

split-half datasets produced a significant improvement in metric convergence, with a

minimum of 12 split-half datasets. After each metric had been calculated for a split-

half dataset, the variance in that metric’s value was calculated across all split-half

datasets thus far. The mean variance in that metric was then calculated across the

most recent three split-half datasets and compared to the mean variance across the

fourth, fifth, and sixth most recent split-half datasets. This provided a measure of the

change in variance in two windows of three split-half datasets. Calculations across

split-half datasets continued for that metric until variance decreased by less than

50% in two such adjacent windows. The number of split-half datasets required for

convergence for each intra-session reliability metric was recorded for each bootstrap

dataset. Once each metric had converged, its average value was calculated over all

split-half datasets for a single bootstrap dataset.

Finally, for each subject, after goodness of fit had been calculated and each

intra-session reliability metric had converged for each of 120 bootstrap datasets,

the difference between good and poor data was calculated for each metric using a

one-sided Student’s t-test. This was conducted with the null hypothesis that any

observable differences in the metric between ‘good’ and ‘poor’ data were the result

of random variation and the alternative hypothesis that the metric value in the good

condition was significantly higher than the metric value in the poor condition. The
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performance of each metric across subjects was then compared using a one-way

repeated measures analysis of variance (ANOVA). Minitab (Minitab 19 Statistical

Software, Minitab Inc., USA) was used to perform the one-way ANOVA; a Ryan-Jones

normality test and Levene’s test for homogeneity of variances were first performed to

ensure the appropriateness of one-way ANOVA for this dataset.



Chapter 3

Results

3.1 Overview of Pre-Surgical Mapping Data Acquired

Prior to a comparison of quality metric performance across good and poor data, this

section qualitatively examines the effect of data quality manipulation on the acquired

data.

3.1.1 Evoked Fields

Figure 3.1 shows event-related field magnetometer data in grand average for all

paradigms in both conditions. Global field power and topographies of interest selected

based on peaks in the GFP are shown for each paradigm and condition.

Somatosensory event-related fields in the good and poor conditions exhibit large

deflections in the magnetic field both at the time of the stimulus itself and at later

peaks approximately 20, 35, 50, and 70 ms post-stimulus. The peak at stimulus onset

is an artefact caused by the electrical stimulus used to evoke a somatosensory response.

Subsequent peaks correspond to the N20m peak, commonly used to localize the

primary somatosensory cortex [6], and later peaks also localizing to the contralateral

somatosensory cortex [24]. These peaks are present in both good and poor somato-

sensory data, despite the presence of noise in poor data resulting from the magnetic

artefact.

Motor event-related fields in the good condition indicate a peak deflection at

approximately 60 ms post-stimulus. The sensor topography at this peak appears to

show a dipolar source in the left frontal region, but the spreading components of this

source could correspond to more than one active source contributing to this pattern.

A later peak at approximately 180 ms in the good condition shows an even more

diffuse dipolar pattern in the same sensor region, likely corresponding to a number of

sources active in the motor cortex. Neither peak is present in the GFP for the poor

34
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condition, although the sensor topography at 60 ms post-stimulus instead shows a

weak dipolar source in the central occipital region, likely the response to the visual

cue for task performance. A similar occipital response can be seen at approximately

50 ms pre-stimulus in both good and poor conditions.

Visual event-related fields in the good condition indicate a prominent deflection

in the magnetic field at approximately 63 ms post-stimulus. This latency corresponds

to the N75m response peak, known to localize to the primary visual cortex on the

contralateral side of a hemi-field checkerboard reversal stimulus [53]. At the N75m

peak, the sensor topography shows a dipolar pattern in the sensors located near

the left occipital region of the brain, which is expected for a checkerboard reversal

presented to the right field of view. Two subsequent peaks at 90 and 130 ms post-

stimulus can also be seen. The former peak, which has a sensor topography likewise

localizing to the right occipital sensors, possibly corresponds to the P100m visual

physiological response. The latter peak shows diffuse activity of unclear origin.

In the poor condition, only small deflections are present at these peak latencies,

demonstrating a significant inhibition of the visual response as the result of the data

quality modulation.

Auditory event-related fields in both the good and poor conditions show a peak

at approximately 110 ms post-stimulus. The topography at this latency appears to

be the result of two dipolar sources in the temporal regions, which would correspond

to the expected bilateral response localizing the primary auditory cortex [54]. This

response does not appear significantly different in the poor condition, indicating that

head movement does not necessarily modulate data quality at the sensor level.

3.1.2 Event-Related Beamformer Maps

Fig. 3.2 shows event-related activity localized with a beamformer for all paradigms

and conditions in grand average, at the response peaks present in the evoked data

(Fig. 3.1).

For the somatosensory paradigm, the response at 50 ms post-stimulus localized to

similar regions of the left parietal lobe for both good and poor data, as expected for

right median nerve stimulation [24]. This is the usual location of the right primary

somatosensory cortex in healthy subjects. Importantly, data quality modulation
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(a) Somatosensory data acquired in the
good condition.

(b) Somatosensory data acquired in the
poor condition.

(c) Motor data acquired in the good condi-
tion.

(d) Motor data acquired in the poor condi-
tion.

(e) Visual data acquired in the good condi-
tion.

(f) Visual data acquired in the poor condi-
tion.

(g) Auditory data acquired in the good
condition.

(h) Auditory data acquired in the poor
condition.

Figure 3.1: Event-related field measurements (magnetometers only) in grand average,
with global field power (green) and relevant sensor topographies.

manifesting in noise in the poor ERF data did not prevent the localization of this

response in the event-related beamformer (ERB) map.
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For the motor paradigm, data in the good condition was localized to the primary

motor cortex at approximately 180 ms post-stimulus, as expected from the ERF data.

However, as predicted by the sensor topography at this latency, the activity in the

motor ERB map is widely distributed. This suggests that even in the good condition,

the motor mapping paradigm may not have achieved focal activation of the primary

motor cortex, but may have instead activated several sources in the surrounding

regions. In the poor condition, no corresponding peak in activation near the right

posterior frontal lobe can be seen, indicating unsucessful localization of the primary

motor cortex.

For the visual paradigm, data in the good condition at the N75m response peak

(shown at 62 ms post-stimulus in Fig 3.2) localized to a focal peak in the right

occipital cortex, suggesting successful localization of the primary visual cortex. At

the same latency in the poor condition, no strong activation was observed, suggesting

that the data quality modulation successfully inhibited localization of the primary

visual cortex.

For the auditory paradigm, similar localization was achieved for both good and

poor data at 107 ms post-stimulus. Activation was most prominent in the left

hemisphere of the brain, while the bilateral response seen in the sensor data (Fig.

3.1) was not present. This is likely an artefact introduced by the beamformer spatial

filter, which attenuates strongly temporally correlated sources [55]. This suppression

of activation in the right hemisphere was present for both good and poor data. It

is difficult to judge whether the head movement introduced during data acquisition

significantly affected localization in the left hemisphere; the location of the ERB peak

in the poor condition appears to be slightly more lateral than in the good condition.

3.1.3 Data Quality Manipulation Outcomes

To provide additional clarity on the quality of data obtained for each subject,

paradigm, and performance, event-related field data was examined for each individual

subject. Specifically, the average sensor topography was assessed for the presence

of strong dipolar sources near the expected brain regions at peaks in the GFP for

each subject. Table 3.1 indicates whether the expected response was achieved in each

case. Although results in grand average (see previous section) indicate successful data
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Figure 3.2: Event-related beamformer maps in grand average, thresholded to half the
maximum in the good condition for each paradigm.

quality modulation for somatosensory, visual, and motor data, significant variability

in successfully eliciting the desired response existed between paradigms. In the good

condition, a somatosensory response was present in seven out of eleven subjects, each

of whom also exhibited an observable response in the poor condition. For the motor

paradigm, eight out of eleven subjects exhibited a motor response, while no such

response was present in the poor condition. In the visual data, all subjects exhibited

a visual response in the good condition, while only one subject also exhibited a visual
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response in the poor condition. The auditory data was of notably poor quality: only

three subjects exhibited an auditory response in the good condition, all of whom also

exhibited a response in the poor condition.

Somatosensory Motor Visual Auditory

Subject Good Poor Good Poor Good Poor Good Poor

sub01 Y Y Y N Y N N Y

sub02 Y Y - - Y N N N

sub03 Y Y Y N Y N Y Y

sub04 Y Y Y N Y N Y Y

sub05 - N - - Y Y N N

sub06 Y Y Y N Y N N N

sub07 N N Y N Y N - -

sub08 Y Y Y N Y N Y Y

sub09 N N Y N Y N N N

sub10 N N Y N Y N N N

sub11 Y Y - - Y N N N

Table 3.1: Indication of whether expected response was present (as evaluated by
visual inspection) in sensor-level data for each paradigm, subject, and performance.
Y: response present, N: response absent, -: results unclear.

In order to compare metric performance, somatosensory and visual data were

selected for further analysis based on the relative homogeneity of subject response.

After initial calculation of quality metrics as a function of time, motor data was

excluded from statistical comparison of metric performance because although on

average the expected response was observed in good data, it was difficult to identify

distinct peaks corresponding to an evoked response at single time points (see Fig.

A.1 and further discussion in section 4.2.2). Auditory data was excluded from metric

calculation entirely due to the small number of subjects in which the desired response

was evoked.
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3.2 Group Quality Metric Comparison

3.2.1 Quality Metric Time Series

Metric time courses across the group for somatosensory, motor, and visual data are

presented in Figs. 3.3, 3.4, and 3.5, respectively. Single subject curves are provided

in Supplementary Materials (Appendix A, Figs. A.3 and A.4. In both somatosensory

and visual paradigms, intra-session reliability metrics show a strong correlation with

goodness of fit. For these datasets, all four metric time curves reach their lowest

values during the baseline interval, and peak at times corresponding to large field

deflections in the evoked data (Fig. 3.1). For the somatosensory paradigm in both

the good and poor condition, the largest and most consistent peak across metrics

corresponds to the N20m response, although a less prominent peak near 35 ms can

also be seen. In the good visual data, three prominent metric peaks can be observed

at approximately 63 ms, 90 ms, and 110-115 ms, which agree well with peaks in the

good visual ERF data. The first peak corresponds to the N75m response, also seen

in the ERF data at this same latency. The second peak also occurs at the same time

in the ERF data, while the third metric peak occurs earlier than its ostensible GFP

counterpart at 130 ms. This peak could correspond to the positive magnetic field

deflections reaching a local maximum at approximately 112 ms in the visual ERF

data. Later shallow peaks observed in the GFP are not clearly seen in the metric

time courses, perhaps due to less consistent timing of responses across individual

subjects. Moreover, the Dice and Pearson coefficients exhibit notably higher baseline

values relative to goodness of fit and reliable fraction. For motor data, while the

intra-session reliability metrics for the good condition reach a peak at approximately

260 ms post-stimulus, goodness of fit remains low. This likely indicates the presence

of extended regions of activity which, while somewhat reliable (peaking at a lower

reliability score than achieved by either somatosensory or visual data), is poorly

modelled by a single ECD. In the somatosensory data, an early peak corresponding to

a reliable artefact from the electrical stimulus applied across the participant’s median

nerve can be seen for all three intra-session reliability metrics. There is no clear

separation between somatosensory data acquired in the good and poor conditions, as

expected from the group beamformer activity maps (Fig. 3.2), further indicating that
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the quality of activation maps was not significantly changed by the introduction of a

metallic artefact. This contradicts Hypothesis 1 (a measurable change in data quality

in all metrics) for somatosensory data. In contrast, metric time curves corresponding

to good and poor visual data show a significant separation between conditions for

all four metrics. This is a further confirmation of successful data quality modulation

(Hypothesis 1) for visual data.

3.2.2 Quality Metric Values at Response Peaks

Latencies found for the response peak for each subject and paradigm in the good

condition are presented in Table 3.2. The distribution of metric values at these

response peaks for each subject is shown in Fig. 3.6 and Fig. 3.7 for somato-

sensory and visual data, respectively. For both mapping paradigms, a high degree of

variability in data quality metrics can be seen across subjects. This is particularly true

for visual data in the good condition, where the clinical standard metric, goodness of

fit, ranges from approximately 20-70% between subjects. The results of a statistical

comparison of metric values calculated for the good and poor condition at the N20m

somatosensory response peak and the N75m visual response peak are given in Table

3.3 and Table 3.4, respectively. For somatosensory data, no significant increase in

any data quality metric was found for data acquired in the good condition relative

to data acquired in the poor condition. For visual data, all metrics measured a

significant increase in data quality for data acquired in the good condition relative

to the poor condition. Out of all four metrics, goodness of fit measured the largest

statistical increase in data quality across the group (p = 5.2 × 10−5), followed by

reliable fraction (p = 1.4× 10−4), the Pearson correlation (p = 1.0× 10−3), and the

Dice coefficient (p = 1.3 × 10−3). This is only a partial confirmation of Hypothesis

2.1: although reliable fraction outperformed the other two intra-session reliability

metrics, goodness of fit remained the most sensitive to changes in data quality across

the group.

3.2.3 Intra-Session Reliability Metric Convergence

Running the ROC-r analysis in a preliminary test of convergence demonstrated that

the reliable fraction reached a variance of less than 0.001 after averaging across 30
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Subject Somatosensory Peak Latency (ms) Visual Peak Latency (ms)

sub01 21 73

sub02 19 67

sub03 20 84

sub04 21 66

sub05 40 62

sub06 19 68

sub07 74 63

sub08 38 58

sub09 19 61

sub10 25 64

sub11 24 74

Table 3.2: Latencies of response peaks (in milliseconds post-stimulus) found from the
event-related field data in the good condition for each subject.

t-value p-value

Goodness of Fit 0.606 0.279

Reliable Fraction 0.258 0.401

Pearson Correlation -1.813 0.950

Dice Coefficient -1.834 0.952

Table 3.3: Statistical significance of difference between good and poor somatosensory
data at the N20m response peak measured by each metric across all subjects.

t-value p-value

Goodness of Fit 6.18 5.2× 10−5

Reliable Fraction 5.45 1.4× 10−4

Pearson Correlation 4.12 1.0× 10−3

Dice Coefficient 3.96 1.3× 10−3

Table 3.4: Statistical significance of difference between good and poor visual data at
the N75m response peak measured by each metric across all subjects.

randomly selected split-half data sets. These results are shown in Fig. 3.8. As such,

all values for reliable fraction presented at the group comparison level were averaged

across 30 split-half datasets.
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Figure 3.8: Maximum variance in the reliable fraction across all time points and
paradigms when averaged across varying numbers of split-half datasets for subject 1.
Solid lines correspond to data acquired in the good condition; dashed lines correspond
to data acquired in the poor condition.

3.3 Single Subject Quality Metric Comparison

A comparison of metric performance at the single-subject level was made for visual

data only, since this dataset provided consistent activation in the good condition and

a successful modulation of activation map quality. A nonparametric bootstrap was

used to generate a distribution of metric values for data in each condition for each

subject.

3.3.1 Response Peak Distributions

Each bootstrap distribution was obtained at a single time point for each metric (and

subject). This time point was selected by choosing the time corresponding to the

maximum value reached by each metric near the response peaks selected for the
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previous group comparison. These time points are presented in Table 3.5. The

difference between the time points at which each metric reached its peak and the

response peak latency previously selected from the peak in the global field power

(Table 3.2) is given in Table 3.6. No significant difference exists between the mean

times at which each metric peaked across all subjects. However, it was slightly more

common for metrics to peak at a time later than the global field power (true for all

metrics for 6/11 subjects).

For each subject, a distribution of quality score values is plotted for each metric

and performance condition in Fig. 3.9 over 120 bootstrap datasets. For most subjects

(8/11), all metrics show a large separation (falling outside the interquartile range of

the opposite condition’s distribution) between the mean values for good and poor

data. However, the good and poor distributions generally overlap for all subjects

and metrics, with the only exception being goodness of fit and reliable fraction for

subjects 6 & 7. The Dice and Pearson metric values exhibit a much smaller range

(approximately 0.5-0.8) than goodness of fit and reliable fraction (0-0.8). This is to be

expected from the group quality metric curves (Fig. 3.5), where the Dice and Pearson

coefficient curves have a higher baseline value and a smaller separation between good

and poor curves than goodness of fit and the reliable fraction. Three subjects (4, 9,

& 11) appear to have a much smaller separation between good and poor data due to

reduced quality scores in the good condition across all metrics.

3.3.2 Statistical Comparison

For each subject and metric, a one-sided t-test was used to measure the statistical

significance of the separation between good and poor data. The results of these

statistical tests are shown in Table 3.7. All metrics measured a significant (p<0.001)

increase in data quality values for the good condition, as compared to the poor conditi-

on, for all subjects, with the exception of the Dice and Pearson coefficients for subject

11, which measured p≈0.03. This is a further validation of a measurable change in

data quality across all metrics as the result of our manipulation (Hypothesis 1) for

the visual dataset. The t-statistic measured for each subject by each metric is plotted

in Fig. 3.10. For eight out of the eleven subjects, goodness of fit and reliable fraction

measured a more significant separation than the Dice or Pearson coefficients. For the
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Subject Goodness of Fit Reliable Fraction Dice Pearson

sub01 80 70 80 66

sub02 65 65 63 64

sub03 95 94 94 98

sub04 72 61 73 73

sub05 61 64 60 62

sub06 65 66 65 65

sub07 63 63 63 63

sub08 61 59 60 61

sub09 68 68 64 64

sub10 71 71 71 71

sub11 81 81 81 81

Table 3.5: Latencies (in milliseconds post-stimulus) at which each metric reached its
maximum value in a window centred around response peak latencies (Table 3.2) for
visual data in the good condition for each subject.

Subject Goodness of Fit Reliable Fraction Dice Pearson

sub01 7 -3 7 -7

sub02 -2 -2 -4 -3

sub03 11 10 10 14

sub04 6 -5 7 7

sub05 -1 2 -2 0

sub06 -3 -2 -3 -3

sub07 0 0 0 0

sub08 3 1 2 3

sub09 7 7 3 3

sub10 7 7 7 7

sub11 7 7 7 7

Average ± St. Dev. 3.8±4.6 2.0±5.0 3.1±4.8 2.5±6.0

Table 3.6: Difference between latency at which each metric reached its peak (Table
3.5) and latency of response peak in event-related field data (Table 3.2) for visual
data in the good condition for each subject.

remaining three subjects (4, 5, & 9), the Dice and Pearson coefficients outperformed

reliable fraction in all cases and outperformed goodness of fit in two cases. All metrics
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(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

(e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8

Figure 3.9: Distributions of metric values estimated at each subject’s visual response
peak over 120 bootstrap datasets.
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(i) Subject 9 (j) Subject 10

(k) Subject 11

Figure 3.9: Distributions of metric values estimated at each subject’s visual response
peak over 120 bootstrap datasets.

measured relatively small increases in quality for good data compared to poor data in

these three subjects. However, in the case of subject 11, which had a similarly small

change in data quality, goodness of fit and reliable fraction outperformed the Dice

and Pearson coefficients. As shown in Table 3.7, goodness of fit tended to measure

the greatest separation between good and poor data (6/11 subjects), followed by

reliable fraction (3/11) and the Dice coefficient (2/11). Goodness of fit had the largest

mean t-statistic (32.00), followed by reliable fraction (30.98), the Pearson coefficient

(19.56), and the Dice coefficient (19.20). Group means with their corresponding 95%

confidence intervals are reported in Table 3.7, and visually represented in Fig. 3.11.

However, there were no statistically significant differences between the group mean

t-stat for each metric as determined by one-way ANOVA (F(3,40) = 1.51, p = 0.228).

The group means cannot therefore be interpreted as a validation of Hypothesis 2.2,

as reliable fraction did not measure a statistically greater change in data quality for

all subjects. However, further ranking the metrics by the significance of the change in

data quality measured for each subject from largest (1) to smallest (4) and summing
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these rank scores for all subjects, I found that goodness of fit ranked best across all

subjects (rank 19), followed by reliable fraction (rank 24), the Dice coefficient (rank

33), and the Pearson coefficient (rank 34). This suggests that the larger group mean

t-statistics for goodness of fit and reliable fraction are not the result of statistical

variation, but reflect a greater sensitivity to changes in data quality.

Subject Goodness of Fit Reliable Fraction Dice Pearson

sub01 30.02 (2) 43.87 (1) 18.76 (4) 26.81 (3)

sub02 23.15 (1) 18.59 (2) 11.17 (3) 10.59 (4)

sub03 31.16 (1) 27.81 (2) 14.93 (3) 12.49 (4)

sub04 6.027 (3) 5.42 (4) 7.13 (1) 6.06 (2)

sub05 21.20 (1) 19.26 (4) 20.86 (2) 20.58 (3)

sub06 72.97 (1) 57.26 (2) 39.48 (4) 42.11 (3)

sub07 66.85 (2) 70.27 (1) 13.53 (4) 15.39 (3)

sub08 52.82 (1) 50.60 (2) 45.96 (3) 40.56 (4)

sub09 5.29 (4) 6.16 (3) 9.86 (1) 9.82 (2)

sub10 34.34 (2) 38.30 (1) 27.62 (4) 28.89 (3)

sub11 8.25 (1) 3.22 (2) 1.89 (3) 1.86 (4)

Average t-stat 32.00±15.73 30.98±15.29 19.20±9.13 19.56±9.08

Overall ranking 19 24 33 34

Table 3.7: Statistical difference between good and poor data for each subject
measured by each metric using a one-sided t-test. For each subject, bracketed numbers
show the metrics ranked in order of the magnitude of the change in data quality
measured (1 being the greatest).

3.3.3 Convergence Across Bootstrap Datasets

The variance in each metric was initially tracked over the course of 1000 bootstrap

datasets for subject 1 to investigate the progression of the convergence of bootstrap

datasets. As shown in Fig. 3.12 (a), variance in reliable fraction in the good condi-

tion increased as the number of bootstrap datasets increased from approximately

100 to 1000. It is notable that the variance in reliable fraction in the good condition

increased sharply during the first 50 bootstrap resamples. This behaviour, along with

any later increase, was not observed for the other metrics and for reliable fraction in
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Figure 3.10: Statistical difference between good and poor data for each subject
measured by each metric using a one-sided t-test.

Figure 3.11: Mean statistical difference between good and poor data for each subject
measured by each metric using a one-sided t-test. Error bars indicate 95% confidence
intervals.

the poor condition, which converged to a stable variance within 100-150 bootstrap

resamples. It is unclear whether a similar increase in variance would manifest in the

other subjects, which were run for only 120 bootstrap resamples due to limitations on

processing time. A similar initial increase in variance for reliable fraction in the good
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condition may be seen in subjects 2, 4 & 11, while reliable fraction in the poor condi-

tion exhibits a very large increase (> 200%) near bootstrap 30 in subject 9. In my

opinion, even without complete convergence, the metric distributions estimated over

120 bootstraps should be sufficient for the metric comparison in the previous section.

The large increase in variance in cases such as subject 9 suggests that significant

outliers can result from metric calculations on a single bootstrap dataset. Randomly

resampling with replacement from a relatively small number of epochs (100) could be

expected to occasionally generate a dataset composed of a large number of repeated

epochs, which might unduly bias the estimation of reliability-based metrics.
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(a) Subject 1

(b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5

(f) Subject 6 (g) Subject 7

Figure 3.12: Variance in each metric as the number of bootstrap datasets increases.
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(h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Subject 11

Figure 3.12: Variance in each metric as the number of bootstrap datasets increases.



Chapter 4

Discussion

This thesis has compared the performance of three intra-session reliability metrics in

distinguishing MEG functional data acquired for focal mapping paradigms in good

and poor conditions. This comparison was complicated by acquiring high quality

data with varying levels of success for different paradigms in the absence of a ‘true’

measure for data quality. Nonetheless, in the two suitable mapping paradigms, intra-

session reliability metrics demonstrated comparable sensitivity to data quality relative

to the clinical standard metric, ECD goodness of fit. Moreover, reliable fraction

displayed greater sensitivity to changes in data quality than either the Dice or Pearson

coefficients. In this chapter, I will discuss this comparison and its confounds in more

detail while drawing out differences between the three intra-session reliability metrics.

4.1 Summary of Main Findings

I acquired MEG data using pre-surgical mapping paradigms to localize the primary

somatosensory, motor, visual, and auditory cortices in twelve healthy subjects. For

each subject and paradigm, I acquired data in both a standard ‘good’ condition and

in a ‘poor’ condition where data quality issues were simulated in unique ways for each

paradigm. My hypotheses for the outcome of data manipulation and the performance

of metrics across subjects and paradigms were as follows:

Hypothesis 1: Across all subjects and paradigms, I hypothesized that all

quality assurance metrics would measure higher values for scans acquired in the

good condition than for those acquired in the poor condition at times when an

evoked response was present in the good data.

Hypothesis 2.1: I predicted that a significantly larger change in reliable

fraction would be found between all good and poor datasets across the group,

as compared to goodness of fit and the Dice and Pearson coefficients.

58
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Hypothesis 2.2: I predicted that at the single-subject level, reliable fraction

would measure the largest difference between good and poor datasets across all

subjects, as compared to the other metrics.

4.1.1 Outcomes for Hypothesis 1 and 2.1

Significant variation in data quality across mapping paradigms was observed. While

the expected responses were evoked in somatosensory and visual data, it was difficult

to elicit a consistent motor response. Moreover, no auditory response was observed

in 8/11 subjects.

Metric performance was evaluated across the group for both visual and somato-

sensory data. No significant difference between good and poor somatosensory data

was found by any metric at the group-level (Table 3.3). This was expected based

on the MEG data processing pipeline’s ability to mitigate sources of noise such as

the simulated dental implant. While data quality was low prior to processing, the

overall quality of activation maps achieved in the good condition was high. Thus,

while Hypothesis 1 was not observed in somatosensory data, this can be viewed as

a positive effect for all data quality metrics. The most useful comparison of metric

performance across the group was shown for the visual mapping paradigm, since

qualitative examination of visual data showed significant differences between data

acquired in the good and poor conditions (Figs. 3.1 and 3.2). All metrics measured a

significant change in data quality across the group (Table 3.4), confirming Hypothesis

1 for this data. However, goodness of fit measured the largest change in quality,

contradicting Hypothesis 2.1. Notably, reliable fraction measured a larger change

than the Dice or Pearson coefficients, suggesting greater sensitivity to changes in

data quality.

4.1.2 Outcome for Hypothesis 2.2

Using a nonparametric bootstrap to estimate metric distributions for each subject’s

good and poor visual data, I found that goodness of fit measured a larger change

in data quality in the majority of subjects (6/11; see Fig. 3.10). Reliable fraction

measured the largest change in data quality in 3 subjects, while the Dice coefficient

measured the largest change in data quality in 2 subjects. One-way ANOVA across
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the group found no significant difference in metric performance at the group level.

However, ranking metric performance for each subject, reliable fraction (rank 24)

consistently outperformed the Dice (rank 33) and Pearson (rank 34) coefficients (Table

3.7) for individual subjects. Thus, while Hypothesis 2.2 was not confirmed across the

group, reliable fraction demonstrated a considerable advantage over the Dice and

Pearson coefficients, exhibiting similar behaviour to goodness of fit (rank 19). For

cases of distributed activity where goodness of fit is not a viable quality metric,

reliable fraction should be considered as a promising measure of data quality.

4.2 Manipulation of Data Quality and Metric Performance

In this section, I discuss the overall success of acquiring data in two distinct ‘good’

and ‘poor’ conditions for each mapping paradigm. For paradigms in which a useful

comparison could be made between good and poor quality data, I discuss the observed

metric behaviour. This section also serves as justification for the exclusion of the

motor and auditory datasets from the metric comparison aspect of this thesis. In

these cases, I discuss the difficulties in eliciting a robust response and suggest potential

solutions for future data acquisitions.

4.2.1 Somatosensory Data

Median nerve stimulation is known to be a highly robust method of localizing the

primary somatosensory cortex. However, no response was observed in 3/11 subjects.

These cases are the result of subject movement displacing the electrodes during the

scan. The electrodes could have been especially susceptible to displacement due to

operator inexperience with the mapping paradigm. It should be noted here that many

issues with collecting high quality data can at some level be attributed to the MEG

operator(s). That is not to assign blame but to point out that following established

procedures and qualitatively inspecting the data during the scan to ensure the

expected response is present is one of the mainstays of MEG quality assurance. Data

for this study was collected by an operator new to this particular MEG imaging centre

and not involved in the study design, and was assisted by myself (with no previous

MEG-related experience), which perhaps contributed to substandard adherence to

standard mapping procedures.
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However, in the cases where a somatosensory response was successfully evoked, it

was straightforward to acquire both good data and data simulating the presence of a

dental implant. While the effects of this manipulation were observed as noise in the

sensor level data (Fig. 3.1), a difference between good and poor activation maps across

the group was difficult to distinguish, both qualitatively (Fig. 3.2) and quantitatively

(Fig. 3.3 and Table 3.3). This is a useful demonstration of the MEG processing

pipeline’s ability to compensate for artefactual sources of noise. In particular, tSSS

is well-equipped to deal with typical dental artefacts [56]. While the beamformer’s

natural suppression of noise could have further contributed to the removal of the

magnetic artefact [12] and has been shown to compensate for similar artefacts [17],

the high quality scores measured by goodness of fit in the poor condition suggest that

the artefact was suppressed prior to source localization. The sensitivity of all four

metrics to the quality of source localization rather than to artefacts in the raw data

demonstrates their utility as quality assurance metrics for pre-surgical mapping.

4.2.2 Motor Data

While a motor response was elicited in most subjects in the good condition (Table 1.1)

and localization in the area of the motor cortex was observed in grand average ERB

data (Fig. 3.2), the overall quality of purportedly good motor data was poor. This can

be seen from a qualitative inspection of the ERF data acquired in the good condition

for each subject (Fig. A.1). While sensor-level responses were observed at the single-

subject level, these were found by manually selecting potential peaks in the GFP

and averaging the sensor topography over several milliseconds. Here, averaging did

not amplify response peaks for each subject, suggesting that a focal motor response

was not consistently evoked. It is probable that this was caused by improper task

performance. Most guidelines recommend training subjects in the performance of

motor tasks and providing opportunities to practice prior to the scan [15]; more

comprehensive training by an experienced technologist might have improved data

quality. Monitoring the EMG response during the scan showed consistent muscle

activity following the visual cue in the good condition, but drawn out movement or

improper movement of other muscles would not have been obvious to detect. Due to

the difficulty in identifying response peaks in single-subject data and the overall low
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data quality measured in the good condition (Fig. 3.4), this paradigm was deemed

unsuitable for a further comparison of metric performance.

4.2.3 Visual Data

It is well known that the visual evoked response to shifts in stimulus pattern is

suppressed during eye movement [57]. Beyond direct suppression as the result of

eye movement in the poor acquisition condition, the moving fixation cross caused

a translation of the checkerboard across the retina. Since changing images in the

visual field activate specific regions of the primary visual cortex corresponding to

their retinotopic location [58], controlled eye movement disrupted focal retinotopic

mapping in the poor visual data. If several regions of the visual cortex were activated

during the short time periods in which the fixation cross was stationary, there may

have been too few trials to distinguish the corresponding signals from the background

noise. Alternatively, once the data had been epoched and averaged, cancellation of

competing signals from different regions of the visual cortex could have masked a

distributed response [59]. Ultimately, data quality manipulation was very successful

for this paradigm. The N75m visual response peak was strongly present in all

subjects’ good visual data, and in only one instance for poor visual data (Table 1.1).

This paradigm was therefore a good candidate to test the ability of each metric to

distinguish good and poor data quality. All metrics measured a significant difference

between good and poor data across subjects at the visual response peak, as expected.

However, variability in the quality of good data across subjects made a statistical

comparison of metric performance difficult. This limitation and possible solutions are

further addressed in sections 4.5 and 4.6.2.

4.2.4 Auditory Data

Although an auditory response could be observed in group-level data (Figs. 3.1 and

3.2), the corresponding response was observed in only 3/11 subjects (Table 1.1). This

was caused by sound levels too low to evoke an auditory response in all subjects, most

likely due to improper transducer positioning within the ear. Although participants

were asked to confirm that they were hearing a series of tones in one ear and white

noise in the other after a brief audio test, it could have been more informative to ask
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subjects to clearly describe the sounds heard and to qualitatively characterize their

loudness. Due to the small number of useful auditory datasets, this paradigm was

excluded from further analysis.

4.3 Advantages of Reliability Analysis at the Source Level

Topographical analysis at the sensor level can often provide insight into MEG data.

It is worthwhile to consider the potential applications for intra-session reliability

applied to sensor measurements, rather than estimations of source activity. On one

hand, this approach would allow for much faster calculation of intra-session reliability

metrics. Not only would time-consuming source estimation be omitted, but the

dimensionality of each split-half dataset would be greatly reduced. For example,

assessing reliability using magnetometers would require calculations to be performed

on only 100 channels, rather than on 12000 voxels. This reduction in processing time

is most significant for reliable fraction. Sensor-level analysis could potentially lead to

a real-time analysis framework, in which epochs are rapidly sorted into test and retest

sets during acquisition, averaged, and compared immediately to guide the operator

in collecting a sufficient amount of good quality data.

However, the shortcomings of this approach can be seen from the intra-session

reliability results obtained for somatosensory data. As previously discussed, noise

and other artefacts in raw data can be effectively mitigated by the MEG processing

pipeline, meaning that a low quality score at the sensor level might not correspond to

a low quality activation map. Moreover, it could be more difficult to distinguish any

reliable artefacts from the desired response in the raw data without the additional

context of source estimation. For this reason, although sensor-level reliability could

be a useful tool for the operator to assess the prominence of artefacts in raw data or

as a general measure of task performance, it is not well-suited to measure the quality

of data for the purpose of pre-surgical mapping.

4.4 Comparing Intra-Session Reliability Metrics

In general, the three intra-session reliability metrics behaved very similarly, increasing

in value at similar times in response to large magnetic field deflections for good data
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across subjects and paradigms. However, the Dice and Pearson coefficients measured

a high baseline reliability score (approximately 0.6; see Figs. 3.3 and 3.5) relative

to reliable fraction (approximately 0.15). As demonstrated in Fig. A.2, baseline

subtracting each metric and then scaling to the variance in the baseline further

emphasizes the similarities between all three intra-session reliability metrics. In

particular, these three metrics have significantly less variance in the baseline interval

relative to goodness of fit, perhaps the result of averaging over a number of split-half

datasets.

However, the Dice and Pearson coefficients’ high baseline values are noteworthy

in that this suggests a significant proportion of these metrics’ value is not sensitive

to the presence of reliable brain activity. In the case of a series of two randomly

generated vectors with values ranging from 0 to 1, the average Dice coefficient will

converge to 0.75, indicating a large overlap between the vectors not caused by any

structural similarities in the two images. It should further be noted that this value

decreases if the scaling of one of the two vectors changes relative to the other. It may

be that variation in the Dice coefficient is therefore more sensitive to similarities in

the ERB scaling than to similarities in the location of ERB peaks. In contrast, the

Pearson coefficient is mean-subtracted, and so is not sensitive to changes in the mean

ERB activity which might exist between the test and retest dataset. Unlike the Dice

coefficient, the average Pearson correlation for a series of randomly generated vectors

will converge to 0. Thus, the high baseline value of the Pearson coefficient does not

result from noise, instead indicating that some structural similarities exist between

the flattened test and retest maps even in the absence of strong brain responses.

Further investigation is required to identify the source of these structures, which

could perhaps relate to the smoothness of the beamformer solution.

In contrast, the ROC-r comparison of test and retest datasets through successive

thresholding ensures that the reliable fraction is strongly dependent on the relative

location of ERB peaks. The sensitivity of these metrics to the properties of peaks

in activation maps could be further tested by restricting the region of comparison

to exclude regions of the brain exhibiting little significant activity. In this case, I

would expect reliable fraction to increase, as it did in a previous study when ROC-

r analysis was performed only on the hemisphere in which the mapping paradigm



65

evoked a response [30]. In contrast, I would expect the Dice and Pearson coefficients

to take on a more variable range of values and potentially decrease, depending on the

strength of the evoked response.

On the group level, all three metrics reach their peaks at nearly the same time at

the N20m somatosensory response and at the same time at the N75m visual response.

However, on the individual level, the three metrics were less consistent. Table 3.6

shows that across all subjects, each metric reached its peak for a fairly wide range

of latencies relative to the peak in global field power. It is particularly noteworthy

that the peaks of the three reliability metrics differed significantly from each other in

timing for several subjects, and were generally not located at the peak in the global

field power. Peaks in global field power have been associated with high similarity in

field topography across nearby latencies for EEG measurements [60], so it is surprising

that this measure does not correspond more directly with agreement between epochs

at a given time point. Assuming that similar topographies across several latencies

may correspond to temporal variations in the same response, it is possible that a split-

half comparison could lead to greater sensitivity to differences in response amplitude

indicating a suboptimal alignment of responses across epochs. However, since in

several cases all metrics reach a maximum for different latencies, a more thorough

investigation of the features classified as reliable by each metric is warranted. In

the future, it would be informative to compare topographies at which each metric is

maximized at both the source and sensor levels. Subtraction with topographies at the

GFP peak could highlight characteristics of reliable data prioritized by each metric.

4.5 Variance in Data Quality Between Subjects

Section 4.2 discussed the general success of each mapping paradigm in acquiring

good and bad data. However, even for the paradigms where data manipulation was

generally successful, significant variability in data quality between subjects can be

seen. This is particularly true for visual data, which even in the good condition

exhibits a wide range in goodness of fit (approximately 18-70%; see Fig. 3.7). While

upon first inspection there is a range of quality scores for good somatosensory data

(Fig. 3.6), a qualitative inspection of subjects with low goodness of fit in the good

condition shows that no somatosensory response was evoked in these cases (subjects 5,
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7, 9, and 10; see Table 1.1). The goodness of fit ranges from approximately 50-90% for

the remaining good somatosensory data. In constrast, a visual response was observed

for all subjects in the good condition, even for datasets with low goodness of fit.

Thus, it seems that the variability in somatosensory data quality is in fact smaller

than the variability in visual data quality. Median nerve stimulation is known to

produce a robust somatosensory response, but the extent of this disparity suggests

that data quality issues affected the visual data in a unique way. The visual mapping

paradigm was performed 17 minutes into the scan (not including set up time), so it is

possible participant fatigue played a role. Although neither paradigm required active

involvement from the participant, eye movement or drowsiness during the good visual

scan could have particularly affected the evoked response (in the same way that was

intended during acquisition in the poor condition). The extent of this effect would

likely vary significantly from subject to subject. While the visual response was still

generally observed in this data, sporadic eye movement in some subjects could have

caused a broader region of activation than would be well explained by a single dipolar

source.

4.5.1 Insight from Single-Subject vs. Group Comparisons

While it is fairly clear from metric scores across the group (along with the complete

absence of expected responses in some subjects) that there is significant variability

in ‘good’ data quality between subjects, the exact distribution of this variability is

unknown. This particularly limits the interpretation of the separation between good

and poor data on a group level (Tables 3.3 and 3.4). For example, consider a group

of subjects with high variability in the change in data quality between good and poor

data. A metric which measured a similar change in data quality for each subject

would have a highly significant separation between good and poor data across the

group while poorly reflecting the underlying quality distribution. In contrast, a metric

which measured a highly variable change in data quality across the group would have

a much less significant separation, but better correspond to the underlying quality

distribution. In the absence of a quantification of the underlying variability, it is

impossible to tell which metric has actually measured data quality more appropriately.

In contrast, a single-subject comparison is less affected by this variability. For
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each single subject, it is more justifiable to assume that a greater separation between

good and poor metric scores corresponds to a greater sensitivity to MEG data quality.

However, a comparison of metric performance (in the form of significance measured

by each metric) across the group is similarly stymied by the great variance in quality

between subjects. Thus, even though goodness of fit and reliable fraction measured a

larger separation between good and poor subjects on average, their performance was

statistically equivalent to the Dice and Pearson coefficients (Fig. 3.11).

4.6 Limitations

4.6.1 Absence of a “Gold Standard” Quality Metric

The gold standard for accurate functional mapping is intraoperative cortical

stimulation. The quality of a non-invasive pre-surgical map can be most directly

assessed by measuring the difference between its source localization and the location

of the relevant functional activity found during the resection surgery. In the absence of

such a gold standard measure, I compared intra-session reliability metrics to goodness

of fit, but as previously discussed, goodness of fit is a clinically used surrogate for

data quality based on the agreement of the data with an ECD model rather than a

true measure of the accuracy of source localization. In another sense, I evaluated the

performance of all four metrics on their ability to measure a difference between data

to which I had assigned a label of ‘good’ or ‘poor’ quality. My qualitative evaluation

of whether or not the expected response was present in this data was justification for

this label (Table 3.3), but the strength of the expected response – corresponding to

the magnitude of the separation between good and poor data – was not quantified.

In this sense, it was unclear how significant the separation between good and poor

data should be for each subject. The implications of this for a group comparison of

metric quality are discussed in section 4.5.1.

Going forward, it might be fruitful to quantify data quality during data

acquisition, depending on the expected manipulation. For instance, data from head

position indicator coils could be used to quantify head movement at each time point or

eye movement could be tracked via EOG readings. However, the problem of relating

these physiological readings to the quality of activation maps remains. As shown
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in the somatosensory data with a simulated dental implant, a measurement of the

intended data quality manipulation (noise resulting from a magnetic artefact) could

reflect a low quality score, when the artefact did not in fact affect the quality of

localization. Such a comparison would instead be most useful when quantifying a

quality issue which could not be mitigated by the processing pipeline, such as poor

task performance. However, this would still not account for variability in data quality

resulting from unmonitored (unintentional) quality issues.

Moreover, since the ultimate goal is to measure data quality in order to improve

surgical outcomes, the most informative evaluation of metric performance would be

based on the clinical utility of a given activation map. In healthy subjects, anatomical

landmarks can usually be used for localization [61]. The quality of functional

localization could be rated by a neurologist based on agreement with anatomical data

for a study comprised of healthy subjects. More ideally, a study could be designed

to assess the utility of a quantitative ‘quality score’ in guiding a MEG operator

in deciding whether to accept or reject a functional map in the presence of known

quality issues. If available, combining quality scores and MEG operator ratings with

the location of functional areas determined during intra-operative cortical stimulation

could examine the performance of intra-session reliability metrics as a surrogate for

accuracy.

4.6.2 Variability in Data Quality Across Subjects

The statistical power of the one-way ANOVA comparison of metric performance across

subjects was significantly limited by the high variability in metric data quality across

subjects. This can be clearly seen in Figure 3.11. Although the mean t-statistic

measured by goodness of fit and reliable fraction was higher than that measured by the

Dice and Pearson coefficients, there is no statistically significant difference between

the four metrics due to the great disparity in ‘good’ data quality across the group (Fig.

3.7). However, ranking all four metrics by their performance in each subject further

suggested that goodness of fit and reliable fraction were more sensitive to changes in

data quality. It seems likely that the overlapping confidence intervals in the mean

t-statistic are the result of variability across subjects rather than variability in metric

performance. This could be overcome with a larger number of subjects to facilitate
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outlier detection and removal. As discussed in the previous section, a measure of

quantification of data quality manipulation collected during data acquisition could

also be helpful to account for variability across subjects. This could even be used to

normalize data quality across subjects. For example, eye monitoring could be used

to quantify eye movement during each epoch. For each subject, a dataset could be

constructed to have a similar eye movement score across epochs, or accounted for as

a covariate during statistical analysis. This would allow a more rigorous comparison

of metric performance across subjects.

4.6.3 Variability in Source Localization Techniques

In this thesis, I have examined the performance of a dipole fitting metric and

the performance of intra-session reliability metrics using split-half activation maps

generated with a spatial beamformer. It is important to consider that the reliability

metrics measured the agreement between activation maps, which could be strongly

affected by the method of source localization. For example, auditory data was

excluded from analysis due to difficulty eliciting the desired response. However, if

auditory data had been included, I might have expected low reliability scores, even in

the good data. The beamformer method of source localization is known to suppress

strongly correlated sources [55], so reliability metrics measured on beamformer

activation maps may perform poorly in the case of bilateral activation. The same

is not necessarily true of other methods of localization, such as minimum-norm

estimation. Furthermore, the spatial extent of the peaks localized by distributed

source solutions is strongly dependent not only on the data itself, but also on the

method of localization [62]. Methods with greater source leakage might have more

overlap between peaks on test and retest maps, resulting in a higher reliability score.

4.6.4 Reliable Artefacts

The operator-independent interpretation of intra-session reliability metrics is thus far

limited by the ability to distinguish reliable brain signals from reliable artefacts. The

main assumption of a split-half reliability analysis is that noisy signals will average

out, while the evoked response of interest will not. This is partially true, as we see

high reliability at latencies corresponding to expected response peaks (Figs. 3.3 and
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3.5). However, we also see high reliability in the presence of a strong time-locked

artefact from the electrical stimulus generating the evoked somatosensory response.

While the difference between this artefactual signal and the expected response peaks

are clear (with an understanding of the data and typical somatosensory evoked fields)

at the group level, greater variability on the single subject level could make similar

artefacts difficult or impossible to distinguish. Artefacts such as undesirable visual

or muscular responses could be reliable when generated by the stimulus itself or

following task performance. For example, a subject could consistently perform finger

abductions with the wrong hand or combine correct abductions with other movement

and still receive a high reliability score. Visual cues could evoke a reliable visual

response, while blinking can likewise be time-locked to cued task performance. The

difficulty of identifying these causes of poor data quality emphasizes the need for

proper training in task performance and the continued use of in-scan monitoring

systems, such as EMG, EOG, or eye-tracking using high-speed cameras to monitor

task performance and facilitate artefact removal.

4.6.5 Metric Convergence for Bootstrap Datasets

As discussed briefly in section 3.3.3, variance in reliable fraction and goodness of

fit did not always converge to a stable value as the number of bootstrap datasets

increased. It is particularly notable that this behaviour was most commonly observed

for reliable fraction in the good condition. It is further interesting that most metrics

appear to have a qualitatively symmetric distribution (Fig. 3.9). Suppose that a good

dataset may generally be described as a large number of good epochs mixed with a

small number of bad epochs contaminated with artefacts. If variance in a metric was

primarily caused by outlying bootstrap datasets with a disproportionate number of

bad epochs, the metric distributions should be asymmetric, weighted toward poor

quality scores. This does not appear to be the case. A closer examination of the

composition of bootstrap datasets which produced significantly outlying quality scores

could provide insight into how reliability was calculated for these datasets, especially

for reliable fraction compared to the Dice and Pearson coefficients. It should be noted,

however, that for subject 1, the relative significance of the change in quality measured

by each metric did not change when the number of bootstrap datasets was increased



71

from 120 to 1000. Nonetheless, an even greater number of bootstrap datasets could

potentially affect the metric distributions found for reliable fraction or goodness of

fit. It is also noteworthy that for all metrics, the median metric value obtained by

bootstrapping (Fig. 3.9) was generally lower than the metric value calculated for the

entire dataset at the same time point (Fig. 3.7). A more reliable estimate of metric

confidence intervals could be obtained by recording data for more than one hundred

trials to reduce the effect of inadvertently amplifying artefactual signals in bootstrap

datasets as the result of random resampling with replacement.

4.7 Future Directions

4.7.1 Clinical Implementation

While this thesis has compared the performance of the discussed quality metrics, it

has not explicitly compared their relative ease of implementation. Since goodness

of fit is determined as part of the dipole fitting procedure, its calculation cannot

be viewed as separate from source localization. However, the three intra-session

reliability metrics rely on data-splitting and repeated source estimation, and must

therefore be calculated separately from source localizations using the entire dataset.

Ideally, an intra-session QA procedure would be simple to implement. The most basic

requirement is an MEG dataset which has been separated into epochs, although

anatomical information for source localization should be provided if available. In

this thesis, intra-session reliability calculations were readily implemented alongside

standard MEG data processing using the open-access MNE-Python framework. In

the future, I envision an extension of this functionality where an operator-independent

QA module could be run as part of the larger data processing pipeline. Although a

single quality score for the entire dataset would be easiest to interpret, we have seen

that metric scores vary significantly with time (Figs. 3.3, 3.5, and 3.4), and that it

is difficult to pre-select a time of interest without visual inspection (Table 3.6). An

intra-session reliablity QA framework could be most useful by returning a metric time

series, indicating high-quality time points at which to generate activation maps. As

a tool to score MEG data scans, the highest value or average value near a paradigm-

specific peak could be returned as a surrogate for overall data quality. However,
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operators might prefer being able to specify a single time point of interest, which

would reduce computation time. Integration with a standard processing pipeline and

fast metric computation could lead to the adoption of these metrics as a real-time

analysis tool to prevent clinical data losses, but that is beyond the scope of this thesis.

More importantly, before these metrics should be adopted for clinical QA it will

be necessary to determine a better system of assigning meaning to metric scores.

As previously discussed in section 1.2.2, there is no single goodness of fit threshold

used to distinguish good and poor data. If intra-session reliability metrics were to be

widely adopted, operators may likewise come to associate a range of scores with good

data quality based on their own underlying understanding of their datasets. However,

the use of these metrics for rigorous QA should be founded in a thorough study of the

performance of these metrics relative to performance in the clinical workflow. At the

very least, use of a standard QA processing pipeline and better reporting of quality

scores in the MEG literature could eventually lead to a community-wide consensus

on the interpretation of these metrics.

4.7.2 Computational Efficiency

Closely related to ease of implementation is the processing time required for

calculation of each metric. I will discuss only the efficiency of calculating the intra-

session reliability metrics, since calculation of goodness of fit is typically performed

within third party optimization routines and does not require processing time separate

from source localization. Of the three reliability metrics, reliable fraction requires the

most time to calculate. Since the ROC-r analysis framework is subject to ongoing

development, calculation of the reliable fraction currently relies on uncompiled code.

The largest improvement in efficiency will likely come from a transition to compiled

code. However, this discussion will focus on possible improvements in efficiency which

could be achieved from methodological changes in calculating the reliable fraction.

While all of the proposed intra-session reliablity metrics are repeatedly calculated

and averaged over multiple split-half datasets, the Dice and Pearson coefficients are

simple functions (Eq. 1.4 and Eq. 1.5), obtained quickly and easily from the test

and retest activation maps. In contrast, reliable fraction requires the comparison of

the test and retest activation maps over a number of thresholds to generate different
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ROC curves for each test threshold. Interpolation is then required to estimate the

threshold at which the area under the ROC curve would first be equal to 0.75 (t0.75).

In order to make these metrics clinically appealing, it may be necessary to further

optimize the required processing time. In my single-subject metric comparison, I

switched from calculating each metric over a fixed number of thirty split-half datasets

to calculating each metric over as many split-half datasets as significantly reduced

variance in the values obtained. For each subject, time point, and bootstrap dataset,

my approach found no significant improvement in metric convergence after twelve

split-half datasets, a 60% reduction in processing time. However, it is worthwhile

to consider whether further improvements in computational efficiency may be made

in this area. A more rigorous analysis of the spread in metric values over different

split-half dataset configurations could prove instructive. For example, for quality

assurance, the most conservative estimate for the metric value might be most

desirable. If datasets were split in half chronologically rather than randomly, this

could provide a measure more sensitive to degradations in quality resulting from

subject fatigue over the course of the scan. Quality issues (such as a lack of alertness

or engagement with task performance) affecting the data as a whole might be more

concentrated in the latter half of the scan, resulting in a greater difference between

test and retest datasets and lower intra-session reliability. A future investigation

could examine the correlation between metric values and the chronological ordering of

epochs during split-half divisions. It would also be helpful to more formally quantify

the expected confidence limits for each metric. Combined with a pre-determined

threshold for ‘good’ data, a scan scoring well above or below this threshold on its

first split-half dataset might not require further averaging. In contrast, a score close

to the threshold could be flagged for further analysis.

For reliable fraction in particular, the process by which t0.75 is obtained for

each threshold could be further streamlined. The number of thresholds required for

estimation of t0.75 could potentially be reduced without comprimising the accuracy

of interpolation. Alternatively, an iterative search method could be used to calculate

t0.75 while comparing the test and retest datasets at thresholds more relevant to

reliable fraction. Calculating t0.75 more quickly and accurately could help to reduce

the variability in reliable fraction between split-half datasets, further improving



74

computational efficiency. These possibilities should be explored before putting reliable

fraction (or the Dice or Pearson coefficients) forward for clinical implementation.

4.7.3 Distributed Activity

This thesis has been motivated in large part by the prospect of an MEG data

quality metric suitable for any evoked response – focal or distributed – so the natural

extension of this work is to assess the performance of intra-session reliability for

more complex mapping paradigms. For pre-surgical mapping, language mapping can

often benefit from localization with distributed sources, particularly when assessing

hemispheric dominance [5, 63]. Mapping of individual language areas, particularly

for later evoked responses, can also result in complex field patterns difficult to fit with

pre-specified sources [64].

However, interrogating the performance of intra-session reliability metrics in cases

of distributed activity will require a different approach than this thesis. Dipole

fitting for more than one or two focal sources is strongly dependent on the a priori

specification of the number of ECDs and their allowable configurations, so goodness

of fit will not be a robust quality measure for comparison. Without an obvious

surrogate for data quality to compare to, it may be possible to manipulate data

quality in a physiologically quantifiable way, as discussed in section 4.6.1. However,

a stronger argument for the use of these metrics to measure data quality could

be made by demonstrating a correlation between intra-session reliability and inter-

session reliability. For instance, it would be informative to acquire language mapping

data over several sessions in an attempt to replicate a previous study which showed

that processing pipeline optimization maximizing intra-session reliability metrics also

minimized inter-session variability in source localization [30].

Thus far the discussion of intra-session reliability metrics has been limited to

the case of task-based activity. It is worthwhile to mention the case of resting-

state scans. Although this is another instance of distributed activation, there is

no natural extension of a similar intra-session reliability approach to quality analysis.

Resting-state data have no events corresponding to stimuli for epoching (although are

sometimes arbitrarily divided for a sliding window analysis based on the frequencies

of interest), so there is no natural division into split-half datasets. Moreover, even
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arbitrarily dividing resting-state data into a test and retest dataset, there is no reason

to expect a reliable response to be present in both activation maps. Intra-session

reliability is therefore better suited to future examination in cases of evoked (rather

than spontaneous) activity.

4.7.4 Other Reliability Metrics

As previously discussed (section 4.4), the Dice and Pearson coefficients are only

partially dependent on peaks in the activation map. Since the reliability of

source localization (corresponding to the peaks) is more clinically relevant than

the reliability of low-activity structures in the beamformer activation map, an ideal

quality assurance metric would be more sensitive to peak location. Previous pattern

recognition algorithms have adapted the Dice coefficient to be more sensitive to certain

image pixels by calculating a weighted Dice coefficient [65, 66]. I propose that a

similar approach be investigated for the Dice and Pearson coefficients as intra-session

reliability measures. Activation maps could be thresholded to some percentage of

maximum activation before calculating the Dice and Pearson coefficients, essentially

weighting low-activity voxels as zero. Although these weighted coefficients would

once again be sensitive to the user’s choice of threshold, their implementation as

a new measure could be accompanied by an initial investigation as to the effect of

the threshold chosen to provide a recommendation for future use. It might also be

possible to adopt a similar approach to the calculation of the reliable fraction, by

plotting the Dice or Pearson coefficient as a function of threshold and defining a new

metric again based on the fraction of thresholds for which a sufficiently high coefficient

was calculated.

Furthermore, other possible approaches to data quality could be adapted from

the functional imaging literature. One notable analysis framework has used both

reliability and prediction accuracy as a surrogate for fMRI and PET data quality [67].

Strother et al.’s nonparametric prediction, activation, influence, and reproducibility

resampling (NPAIRS) framework uses repeated split-half resampling across subjects

to generate test and retest datasets on the group level. In this framework, reliability is

calculated using a similarity measure such as the Pearson correlation, and represented

by the histogram of that measure across all split-half datasets. This is an approach



76

analogous to that followed in this thesis, although MEG epochs allow our analysis to

be performed on the subject rather than group level. However, NPAIRS further uses

the retest datasets as a training set for the prediction of experimental parameters.

Validation of the trained classifier on the test datasets allows the measurement of

prediction accuracy, which Strother et al. put forward as a data quality optimization

metric.

Inspiration for new reliability metrics could also be drawn from image comparison

techniques in other medical fields. For example, the gamma index is a radiotherapy

quality assurance measure used to evaluate the difference between a calculated and

delivered dose distribution [68]. A functional neuroimaging analogue to the gamma

index would compare the activity in each voxel in the test image to the activity in the

same voxel in the retest image, but would also measure the distance to the nearest

voxel containing the same activity. The gamma index at a voxel is then a function

of the difference in activity and this distance to agreement, and indicates higher

agreement between datasets for lower gamma. A similar criterion for reliability might

be a better reflection of localization similarity than the Dice or Pearson coefficients

for a normalized test and retest dataset. Unlike the Dice or Pearson coefficients,

which flatten the activation map into a vector form for comparison, the gamma index

is better suited to compare spatial similarities between images. For example, a small

translation of the same beamformer map might significantly decrease the Dice or

Pearson coefficients since both metrics essentially only compare agreement between

each voxel in the test image to the same voxel in the retest image.

4.7.5 Reliability Mapping

As the previous section begins to suggest, the main drawback to a simple reliability

score is that it is difficult to be sure that the reliability of source localization

is well-represented by the reliability of the data as a whole. Moreover reliable

artefacts are indistinguishable from reliable activation without additional context.

Although a single number quantifying reliability is easy to use and report for quality

assurance, it provides little guidance for the interpretation of questionable data.

However, approaches such as gamma analysis generate a reliability score on a voxel

by voxel basis. One such approach uses replicated fMRI datasets to model an
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underlying reliability distribution [69]. The parameters defining this distribution can

be estimated on a voxel by voxel basis to generate reliability maps [70]. If possible,

adapting a similar voxel-based reliability measure could provide insight into where

reliable areas of activation are located and identify unreliable activation corresponding

to actefactual signals.

4.7.6 Beyond Magnetoencephalography

Electroencephalography (EEG) is notably similar to MEG, measuring the electrical

currents rather than magnetic fields generated by neural activity. Although distortion

of electrical head currents tends to reduce the spatial resolution of EEG [9], paradigms

to evoke a response are largely the same and most analysis methods are applicable to

either imaging technique. There is no reason why intra-session reliability measures

would not be applicable for EEG data. Since EEG systems are not generally used for

pre-surgical mapping, the quality of activation maps might be of less interest than the

consistent presence of the expected response. A sensor-level implementation of intra-

session reliability analysis could potentially provide such a measure while monitoring

EEG data quality in real-time.



Chapter 5

Conclusion

This thesis set out to validate the performance of the reliable fraction, a novel intra-

session reliability metric, to measure data quality for pre-surgical maps acquired with

MEG. I discussed the need for quantitative quality assurance measures in MEG and

the limitations of the current clinical standard metric, goodness of fit. In particular,

goodness of fit is not an effective measure of data quality when the equivalent current

dipole model is not an appropriate method of source localization. This is true for

cases where several regions of the brain may be activated, such as language mapping

paradigms. ROC-r, my group’s framework for reliability analysis, splits task-based

data in half in order to compare the agreement between activation maps within a

single MEG scan. This intra-session reliability is quantified by the reliable fraction,

which we put forward as a quality metric suitable for all activation maps. I also

drew attention to two other possible intra-session reliability measures, the Dice and

Pearson coefficients, which could be calculated using an analogous split-half approach.

I hypothesized that reliable fraction would outperform both the clinical standard,

goodness of fit, and the Dice and Pearson coefficients in measuring the change in

data quality for MEG activation maps acquired in ‘good’ and ‘poor’ conditions.

I acquired data using pre-surgical mapping paradigms to localize the primary

somatosensory, motor, visual, and auditory cortices in twelve healthy subjects. For

each subject and paradigm, I acquired scans in both a standard ‘good’ conditi-

on and a ‘poor’ condition simulating common MEG data quality issues. This

diverse dataset highlighted the need for rigorous quality assurance for MEG data.

I observed significant variations in data quality across mapping paradigms and found

that even in the good condition, the expected motor and auditory responses were

inconsistently elicited across all subjects. While high quality somatosensory and

visual data was successfully acquired in the good condition, different effects of

data quality manipulation were observed for both paradigms. The MEG processing

78
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pipeline effectively mitigated the introduction of a magnetic artefact in the poor

quality somatosensory data, and no significant difference between good and poor

somatosensory data was found by any metric at the group-level (Table 3.3). This

demonstrated the suitability of the proposed intra-session reliability metrics for

measuring the quality of activation maps rather than the quality of raw data, but

did not provide an opportunity to compare metric sensitivity to changes in data

quality. This comparison was performed for the visual mapping data, where only

data acquired in the good condition successfully localized the primary visual cortex.

At the group-level, goodness of fit measured the largest change in data quality at

the visual response peak (p = 5.2 × 10−5), followed by the reliable fraction (p =

1.4 × 10−4), the Pearson correlation (p = 1.0 × 10−3), and the Dice coefficient (p =

1.3× 10−3). However, variability across subjects in the quality of ‘good’ visual data

necessitated a comparison of metric performance at the single-subject level using a

nonparametric bootstrap. Although a one-way ANOVA across the group found no

significant difference in the mean change in data quality measured by each metric,

ranking the metrics by the significance of the change in data quality measured for

each subject, I found that goodness of fit ranked best across all subjects (rank 19),

followed by reliable fraction (rank 24), the Dice coefficient (rank 33), and the Pearson

coefficient (rank 34).

Overall, my results validate the performance of the reliable fraction for use as a

quality assurance metric for MEG data. Of the three potential intra-session reliability

metrics, the reliable fraction appears most sensitive to changes in MEG activation

map quality, and performs well in comparison with goodness of fit. My thesis justifies

the further exploration of the reliable fraction as a quality assurance metric for cases

of distributed brain activity. Moreover, my thesis provides much-needed context for

future studies of quality metric performance in MEG data. I have identified the

shortcomings of data acquisition specific to this study as well as the limitations of

interpreting data quality scores in the absence of a gold standard metric. I have also

suggested several areas for future study in order to better understand the behaviour

of reliable fraction as well as other intra-session reliability metrics going forward.

Beyond their immediate implications, I believe that my results reveal the need

for a better understanding of the typical data quality achieved in MEG scans. Not
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only is there no widely established threshold for rejecting data on the basis of poor

quality for any of the quantitative metrics I have discussed here, but there is also

little emphasis on quantitative, operator-independent quality assurance measures in

the MEG literature. Going forward, establishing a rigorous basis for data quality

reporting and comparison across MEG studies and imaging centres will be important

for the transparency and reproducibility of MEG research as a whole. In the clinical

context, such measures will be essential to ensure high quality pre-surgical mapping

data is acquired for each patient. My research supports the use of the reliable fraction

as one such metric, and provides a frame of reference for its application across a

number of mapping paradigms.



Appendix A

Supplementary Figures

(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

(e) Subject 5 (f) Subject 6

Figure A.1: Event-related fields measured for each subject in the good condition for
motor data. Global field power and topographies at automatically selected peaks are
also shown.
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(g) Subject 7 (h) Subject 8

(i) Subject 9 (j) Subject 9

(k) Subject 11

Figure A.1: Event-related fields measured for each subject in the good condition for
motor data. Global field power and topographies at automatically selected peaks are
also shown.
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(a) Somatosensory quality scores, scaled

(b) Visual quality scores, scaled

Figure A.2: Metric time series in grand average, baseline subtracted and scaled by
the variance in the baseline interval (Table 2.2).
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(a) Subject 1

(b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5

(f) Subject 6 (g) Subject 7

Figure A.3: Metric time series measuring somatosensory data quality for each subject.
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(h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Subject 11

Figure A.3: Metric time series measuring somatosensory data quality for each subject.

(a) Subject 1

(b) Subject 2 (c) Subject 3

Figure A.4: Metric time series measuring visual data quality for each subject.
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(d) Subject 4 (e) Subject 5

(f) Subject 6 (g) Subject 7

(h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Subject 11

Figure A.4: Metric time series measuring visual data quality for each subject.
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